

Inside the square ABCD draw two line segments in order to get 3 triangles and 1 pentagon. Label both segments with letters and write down the name of each shape.

HW 22 Coordinate Plane. Long Multiplication.

Inside square ABCD draw two line segments in order to get 3 triangles and 3quadrilaterals. Label both segments with letters and write down the name of each shape.

8

9.

10

11

Peter came home from the school at 2.10 pm. When did he leave the school if it takes 15 minutes for him to get from home from the school?

Compare without calculation (<, >, =):

 $(14+21) + (21+14) \Box (14+21) \times 3$

 $37 + 24 + 24 + 37 \square (37 + 24) \times 2$

 $(34+19) + (37+37) \square 0$

Write down the expression for each problem. Then, calculate the values of each expression if it's possible.

a) There were five mannequins in a store, and then seven more mannequins were added. How many mannequins are in the store?

b) There are *m* mannequins in a store, and then 3 more mannequins were added. How many mannequins are in the store?

c) There are *s* mannequins in the first store and *p* mannequins in the second store. How many mannequins are in both stores?

d) There are *m* mannequins in a store, and then *p* more mannequins were added. How many mannequins are in the store?

e) There are 18 mannequins in the first store and 24 mannequins in the second store. How many more mannequins are in the first store than in the second one?

f) There are g mannequins in the first store and r mannequins in the second store. How many more mannequins are in the first store than in the second one?

12

Coordinate Plane. Long Multiplication.

Make a list of the first ten multiples of 3

a) Which of the numbers on your list are multiples of 6? - circle them!

b) What pattern do you see where the multiples of 6 appear in the list? – write your answer:

c) Which numbers on the list are multiples of 7? Can you predict when multiples of 7 will appear in the list of multiples of 3? Explain your reasoning.

(a + b + c) - (c - d - e - f - g) - (a + b) - (e + d + f + g) + a =

=

11 // 27		Part I				
Replace the stars	by digits to obtain a	a correct equalit	y:			
a) *** – *	* = 1		b)	*** _ ** = 2	2	
How many solution	ons can you find for	r each problem?				
How much time h	nas elapsed between	the first and the	e second t	imes?		
First time:	Second	l time:	Elapsed ti	ime:		
11 am	1 pm					
5:20 pm	6:30 pi	m				
4:40 pm	8:10 pi	m				
3:22 pm	6:15 pi	m				
On a business trip full tank. He filled He stopped at the many gallons of g	o in Upstate New Yo d 12 gallons when h gas station next to gas did his car use o	ork, Mr. Floyd s ne filled up the f his home and he n the trip?	stopped se irst time. e added 8	everal times t At his next g gallons to m	to buy g gas stop ake the	gas. He start , he filled 1 tank full ag
On a business trip full tank. He filled He stopped at the many gallons of g Calculate:	o in Upstate New Yo d 12 gallons when h gas station next to gas did his car use o	ork, Mr. Floyd s ne filled up the f his home and he n the trip?	stopped se irst time. e added 8	everal times t At his next g gallons to m	to buy g gas stop ake the	gas. He start , he filled 1 tank full ag
On a business trip full tank. He filled He stopped at the many gallons of g Calculate:	o in Upstate New Yo d 12 gallons when h gas station next to gas did his car use o	ork, Mr. Floyd s ne filled up the f his home and he on the trip?	stopped se irst time. e added 8	everal times to At his next g gallons to m	to buy g gas stop ake the	gas. He start , he filled 1 tank full ag
On a business trip full tank. He filled He stopped at the many gallons of g Calculate:	5. $$3.28$ + \$5.27	ork, Mr. Floyd s ne filled up the f his home and he on the trip? 6. \$6.98 <u>- \$2.49</u>	stopped se irst time. e added 8	veral times to At his next g gallons to m \$7.03 <u>- \$6.08</u>	to buy g gas stop ake the 8.	gas. He start , he filled 1 tank full ag \$11.00 <u>- \$5.39</u>
On a business trip full tank. He filled He stopped at the many gallons of g Calculate: Expand the follow 6(z + 3) =	b in Upstate New Ye d 12 gallons when h gas station next to gas did his car use o 5. $$3.28+$5.27ving by removing p$	ork, Mr. Floyd s ne filled up the f his home and he on the trip? 6. \$6.98 <u>- \$2.49</u> arentheses:	stopped se irst time. e added 8 7.	sveral times to At his next g gallons to m \$7.03 <u>- \$6.08</u>	8.	gas. He start , he filled 1 tank full ag \$11.00 <u>- \$5.39</u>
On a business trip full tank. He filled He stopped at the many gallons of g Calculate: Expand the follow $6(z + 3) = _$ $4(6 - y) = _$	b in Upstate New Ye d 12 gallons when h gas station next to gas did his car use o 5. $$3.28+$5.27ving by removing p$	ork, Mr. Floyd s ne filled up the f his home and he in the trip? 6. \$6.98 \$2.49 arentheses:	rst time. e added 8	sveral times to At his next g gallons to m \$7.03 <u>- \$6.08</u>	8.	gas. He start , he filled 1 tank full ag \$11.00 <u>- \$5.39</u>
On a business trip full tank. He filled He stopped at the many gallons of g Calculate: Expand the follow $6(z + 3) = _$ $4(6 - y) = _$ $5(a + 8) = _$	5. $$3.28 \\ + 5.27	ork, Mr. Floyd s ne filled up the f his home and he on the trip? 6. \$6.98 <u>- \$2.49</u> arentheses:	rstopped se irst time. e added 8	sveral times to At his next g gallons to m \$7.03 <u>- \$6.08</u>	8.	gas. He start , he filled 1 tank full ag \$11.00 <u>- \$5.39</u>
On a business trip full tank. He filled He stopped at the many gallons of g Calculate: Expand the follow 6(z + 3) = $4(6 - y) =5(a + 8) =9(3 - q) =4(3z + 6) =$	5. $$3.28$ +\$5.27 wing by removing p	ork, Mr. Floyd s ne filled up the f his home and he on the trip? 6. \$6.98 \$2.49 arentheses:	rst time. e added 8	sveral times to At his next g gallons to m \$7.03 <u>- \$6.08</u>	8.	gas. He start , he filled 1 tank full ag \$11.00 <u>- \$5.39</u>
On a business trip full tank. He filled He stopped at the many gallons of g Calculate: Expand the follow 6(z + 3) = $4(6 - y) =5(a + 8) =9(3 - q) =4(3z + 6) =5(2 - 2y) =$	5. $$3.28$ +\$5.27 ving by removing p	ork, Mr. Floyd s ne filled up the f his home and he in the trip? 6. \$6.98 \$2.49 arentheses:	rstopped se irst time. e added 8	\$7.03 <u>- \$6.08</u>	8.	gas. He start , he filled 1 tank full ag \$11.00 <u>- \$5.39</u>
On a business trip full tank. He filled He stopped at the many gallons of g Calculate: Expand the follow $6(z + 3) = _$ $4(6 - y) = _$ $5(a + 8) = _$ $9(3 - q) = _$ $4(3z + 6) = _$ $5(2 - 2y) = _$ $7(3a + 3) = _$	5. $$3.28 \\ + 5.27 wing by removing p	ork, Mr. Floyd s ne filled up the f his home and he on the trip? 6. \$6.98 \$2.49 arentheses:	rstopped se irst time. e added 8	\$7.03 <u>- \$6.08</u>	8.	gas. He start , he filled 1 tank full ag \$11.00 <u>- \$5.39</u>

	HW 24			Part I	
9	a) DO YOU Write what e	REMEMBER THE each expression is e	E PROPERTII	ES OF ADDITIO	N?
	Commutativ	ve property: <i>a</i> × <i>b</i>	=		
	Associative	Property: (a + b)	+ c =		
	b) DO YOU	REMEMBER TH	E PROPERTI	ES OF MULTIPL	ICATION?
	Commutativ	ve property: <i>a</i> × <i>b</i>	=		
	Associative	Property: (a × b)	× c =		
	Distributive	e property: $a \times (b + a)$	+ c) =		
		$a \times (b \cdot$	-c) =		
10	Ben is jumpi blue point to	ng from one red do the next one. Mar	ot to the next of her stops wit	one (mark his stop h BLUE.	s with RED). Dina is jumping from one
	DINA's path	a: A (1,5) → B (7,5) → C (4,8) →	• D (10,10)	
	BEN's path:	K (1,10) →L (3,7)	\rightarrow M (6,7) \rightarrow	• N (10, 2)	
	Who have m	ade the longest jur	np?	From what	point to what point?
<u>ao</u>					
		r			
	10				
	9			· · · · · · · · · · · · · · · · · · ·	
	8				
	7				
	6				
	5				
	4				
	3				
	2				
	i.				
	0				
	0	1234	5 6 7	8 9 10	
				3	

	HW 2	24									Р	art	Ι												
11	Calcul	late: 49	× 7	7 =							6	57	× 4	4 =								83	× 8	3 =	
								_	_										_						
								-											+		_		_		
12	Ariana pans, v muffir	a likes which 1s eac	s to 1 als 2h. I	bake o ho f Ari	e. Sh old 8 iana	e ha muf fills	s 3 a fins all h	lum eacl er r	iinu h. Sl nuff	m n he a ins	nuff ilso ' pai	in j has ns a	pan s tw at o	s, ea /o si nce	ach tair c, ho	n of nles ow	whi s ste man	ch l el r y n	nol nu nuf	ds 8 ffin j fins	muf pans wou	fins, , whi ld sh	and 2 ch ho e bak	2 cast old 12 xe?	t iron 2
13	A hote labelee	el has d acco	5 ty ordi	/pes ngly	of ro v. Fig	ooms	s dep out i	oend n w	ling hicł	on 1 ro	the : oms	nu s Li	mbe .sa a	er o and	f bo Tiı	eds m li	. The ive?	e ro	om	ıs sh	own	on th	ne ma	ap are	2
	You k	now 1	that:	:													3		2	1	1	4	3	3	5
	•	Neit	ther	of tl	heir 1	oon	ns is	loca	ated	ney	xt th	e n	um	ber	3:	not	5	3	3	4	1	4	3	3	4
		to th	ne le	eft, n	ot to	the	righ	t, no	ot al	ove	e, no	ot b	oelo	w.			1)	5	4	1	4	1	3
																	3		>	1	4	1	3	5	4
	•	Bot	h of	thei	r roo	ms a	are lo	ocat	ed e	eithe	er to	o th	e ri	ght	or	to	5		-	2	1	1	3	3	2
		the	left	of bo	oth tl	ne ni	umb	ers 4	4 an	d 1.	•							2	-	1	1	- - 2	1	5	5
																	4		י א	1	4		4	1	2
	•	Bot	h of	thei	r roo	ms a	are le	ocat	ed r	near	·by ((to	the	rigl	ht,	or	4		-	1	2	4	ン 2	1	2
		left,	ora	abov	ve, or	belo	ow)	of b	oth	the	nun	nbe	ers	l an	nd 5	5.	4	2	+	I	5		3	11.545	3
	•	Lisa	ı's ro	oom	is to	the	left	of T	`im'	s ro	oom.											- «			
14 comm angry	Once u nunicati and de	upon ing to creed	a tir eac l the	me tl ch ot c 3 ru	he pe her u ıles t	cople sing o sir	e of a g lon npli	ı kir g w fy tl	ngdo ords ne w	om s tha vriti	only at cc ng:	/ w ons	rote iste	e us d of	ing f sc	g sq quai	uare es a	s ar nd 1	ıd t tria	triang	gles. s. Tl	The ne kii	y we ng be	re ecame	e
					1.	\triangle	C C	→ (04	Δ															
					2.	0	-C	→ (\$	4														
					3.	\triangle		-																	

Part I

First, rule 1 must be used as many times as possible, then the same applies to rules 2 and 3. Inspect if the following words were transformed correctly:

Transform the following words using the three royal rules:

The distances	hatwaan a towar a tr	a and a cave are cher	un in the drawing What wi	ill von fi
ou perform t	he following actions?	ee, and a cave are snow	vn in the drawing. what wi	iii you iii
5 + 15	distance from tower	to tree and back	•	
15+45			15 m 👗	
45 + 35				5 m
5 + 35 + 45				
			▼ 45 m	
Draw two clo	osed curves, one inside	e the other. Draw an op	ben curve that intersects each	ch of the
urves at two	points. Label the inter	section points with an	y letters you choose.	
Look at the de	efinitions below and co	onnect each definition	with a correct term.	
Look at the de	efinitions below and co	onnect each definition	with a correct term. Ray	
Look at the de is a straight. goes in both	efinitions below and co directions.	onnect each definition	with a correct term. Ray	
Look at the de is a straight. goes in both does not end	efinitions below and co directions. l so you can't measu	onnect each definition are its length	with a correct term. Ray	
Look at the de is a straight. goes in both does not end	efinitions below and co directions. I so you can't measu	onnect each definition are its length	with a correct term. Ray	
Look at the de is a straight. goes in both does not end is straight.	efinitions below and co directions. I so you can't measu	onnect each definition are its length	with a correct term. Ray Line Segment	
Look at the de is a straight. goes in both does not end is straight. is part of a li	efinitions below and co directions. I so you can't measu	onnect each definition are its length	with a correct term. Ray Line Segment	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one end	efinitions below and co directions. I so you can't measu ine.	onnect each definition are its length	with a correct term. Ray Line Segment	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one end goes in ONF	efinitions below and co directions. I so you can't measu ine. point. E direction.	onnect each definition are its length	with a correct term. Ray Line Segment	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one endp goes in ONE	efinitions below and co directions. I so you can't measu ine. point. E direction.	onnect each definition are its length	with a correct term. Ray Line Segment	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one end goes in ONE is straight.	efinitions below and co directions. I so you can't measu ine. point. E direction.	onnect each definition are its length	with a correct term. Ray Line Segment Line	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one endp goes in ONE is straight.	efinitions below and co directions. I so you can't measu ine. point. E direction.	onnect each definition are its length	with a correct term. Ray Line Segment Line	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one end goes in ONE is straight. is a part of a has 2 and a	efinitions below and co directions. I so you can't measu ine. point. E direction.	onnect each definition are its length	with a correct term. Ray Line Segment Line	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one end goes in ONE is straight. is a part of a has 2 endpoi	efinitions below and co directions. I so you can't measu ine. point. E direction.	onnect each definition are its length hts that end the line.	with a correct term. Ray Line Segment Line	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one endp goes in ONE is straight. is a part of a has 2 endpoi Calculate.	efinitions below and co directions. I so you can't measu ine. point. E direction.	onnect each definition are its length	with a correct term. Ray Line Segment Line	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one endp goes in ONE is straight. is a part of a has 2 endpoi Calculate.	efinitions below and co directions. 1 so you can't measu ine. point. 2 direction. 1 line. ints that show the point n + 1 m 5 dm 2 cm =	onnect each definition are its length ats that end the line.	with a correct term. Ray Line Segment Line	
Look at the de is a straight. goes in both does not end is straight. is part of a li has one end goes in ONE is straight. is a part of a has 2 endpoi Calculate.	efinitions below and con- directions. I so you can't measure ine. point. E direction. International direction. International direction direction. The direction direction direction direction direction.	onnect each definition are its length nts that end the line.	with a correct term. Ray Line Segment Line	

HW 24. Part II

Geometry Review.

a) Draw a line segment \overline{AB} .

Draw another line segment \overline{CD} in a way that the intersection between \overline{AB} and \overline{CD} is a point K.

b) Draw a line segment \overline{AB} again below. Draw another line segment \overline{EF} in a way that the intersection between \overline{AB} and \overline{EF} is a line segment \overline{EB} .

Rectangle is divided into 4 squares. Find a perimeter and an area of the rectangle if one side of the shaded square is 8 cm.

P =

9

A =_____

x cookies were distributed evenly into *m* boxes. How many cookies are in each box?

	HW 26										
7	Solve the equations and check the answers.										
	(350 - x) + 250 = 315	x - (400 - 67) -	-100= 170	x + (456 - 123) = 895							
8	In the numbers below, s wild-card symbol *. Wh are impossible to compa	ome of the digits acci- here possible, compare hre.	dentally got erased. e the numbers using	These digits are indicated with t >, <, or =. Cross out the pairs wi	he hich						
	9 🗆 *1		**3 🗌 8	**8 🗆 **6							
	2* 🗌 *7		59 🗌 1**	295 2*4							
	4* 🗌 46		3** 5**	75* 74*							
9	Construct a rectangle 2 perimeter.	cm by 6 cm and find i	ts perimeter. Then, o	construct a square with the same							
10	Solve the problems. a) There are six minivar passengers can the taxis	1 taxis at the airport, a take in total?	nd each can hold sev	ven passengers. How many							
	b) The airplane had 56 p taxes are needed to take	bassengers. Each mini these passengers to a	van taxi can hold se hotel?	ven passengers. How many mini	van						

Angles are sometimes labeled using letters of three points on them, the vertex and one on each side of the angle. The vertex-letter is always the middle letter. There are two names we could give the following angle. It could be labeled $\angle ACB$ or $\angle BCA$:

Properties of Angles

Definition: When the rays are the two halves of a line (they point in opposite directions), the angle is called a *straight angle*:

Definition: When the sides of an angle are perpendicular, the angle is called **a** *right angle*. For now, we are using right angle template to draw right angle.

Right angle

Acute angle

Obtuse angle

SC I	hool (C	Math 2 H	lomework 28	
	Solve equations:			
	x + 209 = 507	905 - x = 459	x - 307 = 428	
	<i>x</i> =	<i>x</i> =	x =	
	<i>x</i> =	<i>x</i> =	<i>x</i> =	
Chee	ck:			
	Write an expression f	or each problem.		
	There are <i>m</i> fish in an	aquarium, and then k more fi	sh	
	were added. How man	ny fish are in the aquarium?		
	There are <i>d</i> fish in the from the aquarium. H aquarium?	e aquarium, and we remove p to ow many fish are in the	ìsh 	
	There are f fish in the second aquarium. How aquarium than in the s	first aquarium and j fish in th w many more fish are in the fi second one?	e rst	
	There are <i>n</i> fish in the second aquarium. We aquarium. How many	e first aquarium and <i>t</i> fish in th remove <i>b</i> fish from the first fish are in both aquariums?	e 	
3	Mark the order of ope	rations and find the result:		
	23 + (9 - 7) =		0 - 8) =	
	13 – 3 + 9 =	27 - (4 + 3) - 1 -	(10 + 5) =	
	20 - (3 + 2 - 1) =	50 - (14 + 6) - 1 -	(10 - 5) =	
	Open the parentheses	, simplify if possible:		
	59 + (k + b) =		100 + (p - 15) =	
	a + 3(k + b) =		52 - 2(p + 15) =	
	56 + 5(k - b) =		52 - 2(p - 15) =	

Perform the actions according to the algorithms in the drawing below. Which of these algorithms is linear and which is branching?

28

	HW 2 Write	28 down an equation and solve it:
15	a)	The first addend is unknown, the second in 13. The sum is 75. Check!
		V
	b)	Subtract 47 from x and get 52. Check your answer.
16	Write	e an equation for the problem and solve
	a)	24 apples were equally divided between x people. Each person got 6 apples.
	1 \	
	b)	Kate had total 56 toys. She prepared y goody bags with 8 toys in each bag. How many goody bags were in each bag?
17.	Find t	the area of a white shape two different ways, if you know that the blue shape is a square with a
		1)
	_	
	8 cm	2)
		10 cm