MATH 5: HANDOUT 22
 GEOMETRY 2.

Sum of angles of an n-GON

Recall that sum of angles of a triangle is 180°. Since a quadrilateral can be cut into 2 triangles, sum of angles of a quadrilateral is $2 \times 180^{\circ}=360^{\circ}$. Similarly, for a pentagon we get $3 \times 180^{\circ}$, and for an n-gon, the sum of angles is $(n-2) \times 180^{\circ}$.

Congruence

In general, two figures are called congruent if the have same shape and size. We use symbol \cong for denoting congruent figures: to say that M_{1} is congruent to M_{2}, we write $M_{1} \cong M_{2}$.

Precise definition of what "same shape and size" means depends on the figure. Most importantly, for triangles it means that the corresponding sides are equal and corresponding angles are equal: $\triangle A B C \cong$ $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the same as:
$A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}, A C=A^{\prime} C^{\prime}$,
$\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}, \angle C=\angle C^{\prime}$.
Note that for triangles, the notation $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ not only tells that these two triangles are congruent, but also shows which vertex of the first triangle corresponds to which vertex of the second one. For example, $\triangle A B C \cong \triangle P Q R$ is not the same as $\triangle A B C \cong \triangle Q P R$.

Congruence tests for triangles

By definition, to check that two two triangles are congruent, we need to check that corresponding angles are equal and corresponding sides are equal; thus, we need to check 6 equalities. However, it turns out that in fact, we can do with fewer checks.

Axiom 1 (Side-Side-Side rule). If $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$ and $A C=A^{\prime} C^{\prime}$ then $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.
This rule is commonly referred to as SSS rule.
One can also try other ways to define a triangle by three pieces of information, such as two sides and an angle between them. We will discuss it next time.

This rule - and congruent triangles in general - are very useful for proving various properties of geometric figures. As an illustration, we prove the following useful result.

Theorem. Let $A B C D$ be a quadrilateral in which opposite sides are equal: $A B=C D, A D=B C$. Then $A B C D$ is a parallelogram.

Proof. Let us draw diagonal $B D$. Then triangles $\triangle A B D$ and $\triangle C D B$ are congruent by SSS; thus, two angles the two angles labeled by letter a in the figure are equal; also, two angles labeled by letter b are also equal. Thus, lines $B C$ and $A D$ are parallel (alternate interior angles!). In the same way we can show that lines $A B$ and $C D$ are parallel. Thus, $A B C D$ is a parallelogram.

(It is also true in the opposite direction: in a parallelogram, opposite sides are equal.)

Homework

1. Let $C D$ be a continuation of side $A C$ in a triangle $\triangle A B C$. Show that then $\angle B C D=\angle A+\angle B$ (such an angle is sometimes called an exterior angle of the triangle. [Hint: sum of the angles in a triangle is equal to 180°.]
2. An n-gon is called regular if all sides are equal and all angles are also equal.
(a) How large is each angle in a regular hexagon (6-gon)?
(b) Show that in a regular hexagon, opposite sides are parallel. (This is the reason why this shape is used for nuts and bolts).
[Hint: show that each of the angles labeled by letter a in the figure is equal to 60°, and then use theorem about alternate interior angles.]
3. Let $A B C$ be a triangle in which two sides are equal: $A B=$ $B C$ (such a triangle is called isosceles). Let M be the midpoint of the side $A C$, i.e. $A M=M C$.
(a) Show that triangles $\triangle A B M$ and $\triangle C B M$ are congruent.
(b) Show that angles $\angle A$ and $\angle B$ are equal
(c) Show that $\angle A M B=90^{\circ}$ (hint: $\left.\angle A M B=\angle C M B\right)$.

4. Let $A B C D$ be a quadrilateral such that $A B=B C=C D=$ $A D$ (such a quadilateral is called rhombus). Let M be the intersection point of $A C$ and $B D$.
(a) Show that $\triangle A B C \cong \triangle A D C$
(b) Show that $\triangle A M B \cong \triangle A M D$
(c) Show that the diagonals are perpendicular and that the point M is the midpoint of each of the diagonals.
[Hint: after doing each part, mark on the figure all the information you have found - which angles are equal, which line segments are equal, etc: you may need this information for the following parts.]

