MATH 6: ASSIGNMENT 15

February 6, 2022

Geometric progression

A sequence of numbers is a geometric progression if the next number in the sequence is the current number times a constant called the common ratio, let's call it q. For example, let's consider the sequence:

$$
6,12,24,48, \ldots
$$

The first term in the sequence is $b_{1}=6$, the second is $b_{2}=6 \times 2=12$, and so on.
The common ratio is $q=2$. Indeed $b_{3}=b 2 \times q=12 \times 2=24$ and $b_{4}=24 \times 2=48$.
What is the $n^{\text {th }}$ term? For example what is b_{10} ?
$b_{1}=6$
$b_{2}=b_{1} \times q=6 \times 2=12$
$b_{3}=b_{2} \times q=\left(b_{1} \times q\right) \times q=b_{1} \times q^{2}=6 \times 2^{2}=24$
$b_{4}=b_{3} \times q=\left(b_{1} \times q^{2}\right) \times q^{2}=b_{1} \times q^{3}=6 \times 2^{3}=48$
$b_{n}=b_{1} \times q^{n-1}$
So $b_{10}=b_{1} \times q^{9}=6 \times 2^{9}=6 \times 512=3072$

Sum of a geometric progression

There is a formula for the sum of a geometric progression:

$$
S=b_{1}+b_{2}+b_{3}+\cdots+b_{n}=b_{1} \times \frac{\left(1-q^{n}\right)}{1-q}
$$

To prove this, we write the sum and we multiply it by q :

$$
\begin{gathered}
S=b_{1}+b_{2}+b_{3}+\cdots b_{n-1}+b_{n} \\
q S=q b_{1}+\mathrm{q} b_{2}+\mathrm{q} b_{3}+\cdots+q b_{n-1}+q b_{n}
\end{gathered}
$$

Remember that $q b_{n-1}=b_{n}$, so that the last term is $q b_{n}=q \times\left(b_{1} \times q^{n-1}\right)=b_{1} \times q^{n}$.

$$
q S=b_{2}+b_{3}+b_{4}+\cdots b_{n}+b_{1} q^{n}
$$

We subtract S from each side:

$$
q S-S=b_{2}+b_{3}+\cdots+b_{n}+b_{1} q^{n}-\left(b_{1}+b_{2}+b_{3}+\cdots b_{n-1}+b_{n}\right)
$$

All terms cancel, except $b_{1} q^{n}$ and b_{1} so that:

$$
\begin{gathered}
q S-S=b_{1} q^{n}-b_{1} \\
(1-q) S=b_{1} q^{n}-b_{1} \\
S=\frac{b_{1} q^{n}-b_{1}}{1-q}=\frac{b_{1}\left(1-q^{n}\right)}{1-q}
\end{gathered}
$$

Homework

1. Write the first 5 terms of a geometric progression if $b_{1}=-20$ and $q=\frac{1}{2}$
2. What are the first 2 terms of the geometric progression: $b_{1}, b_{2}, 24,36,54, \ldots$?
3. What is the common ratio of the geometric progression: $\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \ldots$? What is b_{10} ? What is b_{100} ?
4. Simplify:

$$
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{10}}
$$

5. What is the sum: $1-2+2^{2}-2^{3}+2^{4}-2^{5}+\cdots-2^{15}$?
6. What is the sum: $1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots+x^{100}$?
7. A geometric progression has 99 terms, the first term is 12 and the last term is 48 . What is the 50th term?
8. If we put one grain of wheat on the first square of the chessboard, two on the second, then four, eight,. . . , approximately how many grains of wheat will there be? (You can use 2^{10} $=1024 \approx 10^{3}$). Can you estimate the total volume of all this wheat? Compare with the annual wheat harvest of the US, which is about 2 billion bushels. (A grain of wheat is about $10 \mathrm{~mm}^{3}$; a bushel is about 35 liters, or $0.035 \mathrm{~m}^{3}$)
9. How many multiples of 7 are there between 1 and 1000? Can you find the sum of them all?
10. Find the sum $1+3+5+\cdots+999$.
