Math 6d: Homework 15

HW\#14 is due February 3; submit to Google classroom 15 minutes before the class time.
Please, write clearly which problem you are solving and show all steps of your solution.

Graphs

Generally, a graph of a function, $y=f(x)$, is a line in the $x-y$ plane. If one has two graphs $y=f(x)$ and $y=g(x)$ one can find intersection points of corresponding graphs by solving the system of equations. For example, the intersection point of two straight lines $y=x+2$ and $y=-x$ is the point $(-1,1)$ as $x=-1$ and $\mathrm{y}=1$ satisfy both of these equations; that is the point $(-1,1)$ lies simultaneously on both straight lines.

$$
\text { Graphs of } y=|x| \text { and } y=x^{2}
$$

The figures below show graphs of functions $y=|x|$ and $y=x^{2}$ (a quadratic function in powers of x); the second graph is called a parabola.

The standard form of a parabola, $y=\boldsymbol{a} x^{2}+\boldsymbol{b} x+\boldsymbol{c}$, is hard to immediately visualize and graph. In its vertex form, the parabola's coefficients $\boldsymbol{a}, \boldsymbol{h}$, and \boldsymbol{k} are directly related to the shape of the graph

$$
\mathrm{y}=\boldsymbol{a}(x-\boldsymbol{h})^{2}+\boldsymbol{k} \text { (vertex form), where } h=-\frac{b}{2 a} \text { and } k=-\frac{b^{2}-4 a c}{4 a} .
$$

The graph of a parabola with nonzero a, k, h coefficients, compared to $y=x^{2}$, is vertically stretched by a factor of \boldsymbol{a} (if $a<0$, this means flipping it upside down and then stretching by $|\mathrm{a}|$), and then its vertex is moved to point (h, k). In particular, the branches go up if $a>0$ and down if $a<0$.

You can convert from standard to vertex form. List the coefficients $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ from the standard form, then calculate \boldsymbol{h} and \boldsymbol{k} from the equations above, and after that re-write the graph equation into its vertex form $\mathrm{y}=$ $a(x-h)^{2}+k$. For example, $y=x^{2}+x$ can be converted into $y=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}$

The parabola either intersects $y=0(x$-axis) at two points, does not intersect it, or touches $y=0$ at a single point. These intersecting points are known as roots. Correspondingly, the quadratic equation has two roots, no roots, or one root respectively. One can easily check that this corresponds to $D>0, D<0$ and $D=0$ respectively, where the determinant $D=b^{2}-4 a c$ is fond using the quadratic equation in a standard form.

Homework questions

To draw a graph of an equation, chose a set of points x and find the corresponding y values. Draw the points on a graph and use quadrille (square) paper. Connect with a line or a smooth curve.

1. Find the equation of the line which passes through the point $(3,4)$ and has a slope +2 . (Hint: you only need to find the intercept and write $y=a x+b$)
2. Find the equation of the line through points $(-2,0)$ and $(0,2)$.
3. Sketch the graph of the functions: $y=|x+1|$ and $y=-x+0.25$. How many solutions do you think the following equation has?

$$
|x+1|=-x+0.25
$$

Note: you are not asked to solve the equation - just answer how many solutions there are.
4. Find the intersection point of a line $y=1 / 4 x^{2}$ and a line $y=2 x+1$. Sketch or draw the graphs. (Hint: construct a system of equations and solve).
5. Sketch/draw graphs of the following functions (you may use desmos for this question). Then clearly describe the similarities and the differences between these graphs using full sentences.
a) $x+y=2$
b) $y=|x-5|+1$
c) $y=|x+1|+|x-2|$
d) $y=|x+1|+|x+2|+|x+3|$
6. Sketch/draw graphs of the following function: $y=-x^{2}+4 x-3$
a) To sketch, convert the function from standard to vertex form and use your knowledge of what the coefficients a, h, and k mean.
b) If you cannot convert to vertex form, select x values for a few points, then calculate the corresponding y -values as you will do to graph any other function.
c) Does the graph intersect the x -axis (when in the parabola's equation y is set to 0)? The intersecting points are known as roots.
d) Does the number of roots correspond to the D-value? (*calculating the determinant is optional)

