Math 6d: Homework 23

HW\#23 is due April 7; submit to Google classroom 15 minutes before the class time.
Please, write clearly which problem you are solving and show all steps of your solution.

Arithmetic sequences

A sequence of numbers is an arithmetic sequence if the difference between consecutive terms is the same number, a common difference, let's call it d. For example, consider the sequence:

$$
1,5,9,13,17, \ldots
$$

The first term in the sequence is: $a_{1}=1$, the second is $a_{2}=5$, and so on. The difference is $d=4$. What is the $\mathrm{n}^{\text {th }}$ term? For example, what is a_{100}

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=a_{1}+d=1+4=5 \\
& a_{3}=a_{2}+d=a_{1}+2 d=1+2 \times 4=9 \\
& a_{4}=a_{3}+d=a_{1}+3 d=1+3 \times 4=13 \\
& \cdots \\
& \boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{1}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d} \\
& \text { So } a_{100}=a_{1}+99 d=1+99 \times 4=397
\end{aligned}
$$

Property of an arithmetic sequence

A property of an arithmetic sequence is that any term is the arithmetic mean of its neighbors.

$$
a_{n}=\frac{a_{n-1}+a_{n+1}}{2}
$$

To prove this we can write:

$$
\begin{gathered}
a_{n}=a_{n-1}+d \\
a_{n}=a_{n+1}-d
\end{gathered}
$$

Add the two expressions above and we have: $2 a_{n}=\left(a_{n-1}+d\right)+\left(a_{n-1}-d\right)$

$$
2 a_{n}=a_{n-1}+a_{n-1}
$$

Dividing by 2 both sides:

$$
a_{n}=\frac{a_{n-1}+a_{n-1}}{2}
$$

To find the common difference between 2 terms a_{s} and $a_{t}: \quad d=\frac{a_{s}-a_{t}}{s-t}$

Sum of an arithmetic sequence

$$
S=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=n \times \frac{a_{1}+a_{n}}{2}
$$

To prove this, we write the sum in 2 ways, in increasing order, and in decreasing order:

$$
\begin{aligned}
& S=a_{1}+a_{2}+a_{3}+\cdots+a_{n} \\
& S=a_{n}+a_{n-1}+a_{n-2}+\cdots+a_{1}
\end{aligned}
$$

Adding up:
We notice that:

$$
\begin{gathered}
2 S=\left(a_{1}+a_{n}\right)+\left(a_{2}+a_{n-1}\right)+\left(a_{3}+a_{n-2}\right)+\cdots \\
a_{1}+a_{n}=a_{2}+a_{n-1}=a_{3}+a_{n-2}=\cdots \\
2 S=\left(a_{1}+a_{n}\right) \times n \\
S=\frac{\left(a_{1}+a_{n}\right) \times n}{2}
\end{gathered}
$$

Homework questions

1. Write the first 5 terms of the arithmetic sequence for which $a_{3}=7$ and $d=12$
2. What are the first 2 terms for the arithmetic sequence $a_{1}, a_{2},-9,-2,5, \ldots$
3. If for an arithmetic sequence $a_{10}=131$ and $d=12$, what is a_{1} ? [Hint: use the equation for $a_{n}=a_{1}+$ $(n-1) d \ldots$ and solve for a_{1}]
4. If for an arithmetic sequence $a_{5}=27$ and $a_{27}=60$, find the first term and the common difference. [Hint: use an equation to find d first]
5. Find the common difference in an arithmetic sequence if the $9^{\text {th }}$ term is 18 and the $11^{\text {th }}$ term is 44 .
6. Find the sum of the first 100 terms of an arithmetic sequence if $a_{1}=10$ and $a_{100}=150$.
7. Find the sum of all odd numbers from 1 to 2011.
8. Can you continue the following sequence: $-2,1,6,13,22, \ldots$
[Hint: look at the differences of successive terms!] Write at least 3 more terms.

Review from coordinate geometry:

9. Find the shortest distance from the origin $(0,0)$ to a line given by the equation $y=-2 x+8$. Start by sketching the graph of the line.
10. Compute the area of the rectangle $A B C D$ if A is at $(0,0), B$ at $(2,3)$, and D at $(-6,8)$.
[This can be done in more than one way.]
