Math 6d: Homework 26

HW\#26 is due May 5; submit to Google classroom 15 minutes before the class time.
Please, write clearly which problem you are solving and show all steps of your solution.

Geometric sequence (progression)

The $n^{\text {th }}$ term: $b_{n}=b_{1} \times q^{n-1}$
Sum of the first n terms: $S=\frac{b_{1}\left(1-q^{n}\right)}{1-q}$
Sum of infinite geometric progression, $0<\mathrm{q}<1, S=\frac{b_{1}}{1-q}$

System linear equations, solved by substitution

1. Simplify both equations.
2. From one of the 2 equations, express one of the unknowns (for example, x) in terms of the other one, $x=$...
3. Substitute the obtained expression in the other equation - you have an equation with one unknown (linear equation for y).
4. Solve this equation (find y).
5. Substitute the value for the second unknown (the y-value) back in the first equation (in $x=\ldots$).

Homework questions

1. Solve by using substitution:
a) $\left\lvert\, \begin{gathered}x=5 \\ 20 x+5 y=100\end{gathered}\right.$
b) $\left\lvert\, \begin{gathered}-8 x+y=-4 \\ -21 x+2 y=-13\end{gathered}\right.$
c) $\left\lvert\, \begin{gathered}7 x-3 y=27 \\ 5 x-6 y=0\end{gathered}\right.$
d) $\left\lvert\, \begin{aligned} & 2(x-2)-3(x+y)=3 \\ & (x+1)(y-2)=x y-9\end{aligned}\right.$
e) $\left\lvert\, \begin{aligned} & \frac{2 x-1}{5}+\frac{3 y-2}{4}=2 \\ & \frac{3 x+1}{5}-\frac{3 y+2}{4}=0\end{aligned}\right.$
2. Solve the system equations both by substitution and graphically:
a. $\quad \begin{gathered}3 x-2 y=-1 \\ x+y=3\end{gathered}$
b. $\quad \left\lvert\, \begin{gathered}x+3 y=-4 \\ x-y=0\end{gathered}\right.$
3. In an infinite geometric progression, the $\mathrm{n}^{\text {th }}$ term is defined as $b_{n}=6\left(\frac{1}{3}\right)^{n}$. Find the sum. Optional: Sketch the function $y=6\left(\frac{1}{3}\right)^{x}$ for the first few terms - what do you observe?
4. Find the second term in the geometric progression for which:

$$
b_{2}+b_{5}-b_{4}=10 \text { and } b_{3}+b_{6}-b_{5}=20
$$

