1. Exponents Laws

If $a$ and $b$ are real numbers and $n$ is a positive integer
a. $(a b)^{n}=a^{n} b^{n}$
b. $\sqrt{a b}=\sqrt{a} \sqrt{b}$
c. $(a+b)^{2}=a^{2}+2 a b+b^{2}$
d. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
e. $a^{2}-b^{2}=(a-b)(a+b)$

Replacing in the last equality $\boldsymbol{a}$ by $\sqrt{\boldsymbol{a}}, \boldsymbol{b}$ by $\sqrt{\boldsymbol{b}}$, we get:
f. $a-b=(\sqrt{ } a-\sqrt{ } b)(\sqrt{ } a+\sqrt{ } b)$
2. Simplifying expressions with roots (rational expressions)

The last identity above can be used to simplify expressions with roots by expanding the fractions with a term which "removes" the roots from the denominator:

$$
\frac{1}{\sqrt{2}+1}=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}=\frac{\sqrt{2}-1}{(\sqrt{2})^{2}-1^{2}}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1
$$

3. Quadratic equations of a specific form

- linear equation (i.e., equation of the form $a x+b=0$, with $\mathrm{a}, \mathrm{b}$ some numbers, and x the unknown and equation)
- two types of quadratic equations (i.e, equations where the unknown is squared, $x^{2}$ ) when the left-hand side could be factored as product of linear factors, i.e, $(x-2)(x+$ $3)=0$.

4. Pythagoras' theorem

In a right triangle with legs $\boldsymbol{a}$ and $\boldsymbol{b}$, and hypotenuse $\boldsymbol{c}: c^{2}=a^{2}+b^{2}$. The converse is also true, if the three sides of a triangle satisfy $c^{2}=a^{2}+b^{2}$, then the triangle is a right triangle. Some Pythagorean triples are: $(3,4,5),(5,12,13),(7,24,25),(8.15,17),(9,40,41),(11,60,61),(20,21,29)$.

To generate such Pythagorean triples, choose two positive integers $a$ and $b$. Then plug the values into the sides as shown on the first picture:


Try to figure out again why the sides of this triangle satisfy the Pythagoras' Theorem! 45-45-90 Triangle: If one of the angles in a right triangle is $45^{\circ}$, the other angle is also $45^{\circ}$, and two of its legs are equal.
If the length of a leg is $a$, the hypothenuse is $a \sqrt{2}$.
30-60-90 Triangle: If one of the angles in a right triangle is $30^{\circ}$, the other angle is $60^{\circ}$. Such triangle is a half of the
equilateral triangle. That means that if the hypothenuse is equal to $a$, its smaller leg is equal to the half of the hypothenuse, i.e. $\frac{a}{2}$. Then we can find the other leg from the Pythagoras' Theorem, and it will be equal to $\frac{a \sqrt{3}}{2}$.

## MATH 7 HOMEWORK 3: Algebraic identities. Pythagoras theorem <br> October 17, 2021

Instructions: Please always write solutions on a separate sheet of paper. Solutions should include explanations how you arrived at this answer.

1. Simplify
a. $\frac{6^{3} \times 6^{4}}{2^{3} \times 3^{4}}=$
b. $\left(2^{-3} \times 2^{7}\right)^{2}=$
c. $\frac{3^{2} \times 6^{-3}}{10^{-3} \times 5^{2}}$
2. Simplify
a) $\frac{a}{2}+\frac{b}{4}=$
b) $\frac{1}{a}+\frac{1}{b}=$
c) $\frac{3}{x}+\frac{5}{x y}+\frac{5}{3 a}=$
3. Solve system of equations:
a. $\left\{\begin{array}{c}6 x-5 y=-3 \\ x+y=5\end{array}\right.$
b. $\left\{\begin{array}{l}5 x+2 y=16 \\ 2 x+3 y=13\end{array}\right.$
4. Using algebraic identities calculate
a. $299^{2}+598+1=$
b. $199^{2}=$
c. $51^{2}-102+1=$
5. Expand
a. $(4 a-b)^{2}=$
b. $(a+9)(a-9)=$
c. $(3 a-2 b)^{2}=$
6. Solve the following quadratic equations. Hint: Factor first (i.e., write as a product):
a. $x^{2}-18 x+81=0$
b. $3 x(x+1)+2(x+1)=0$
c. $36 a^{2}-49=0$
7. Write each of the following expressions in the form $a+b \sqrt{3}$ with rational $\mathrm{a}, \mathrm{b}$. (No root in the denominator):
a. $(1+\sqrt{3})^{2}$
b. $(1+\sqrt{3})^{3}$
d. $\frac{1+\sqrt{3}}{1-\sqrt{3}}$
e. $\frac{1+2 \sqrt{3}}{\sqrt{3}}$
8. In a trapezoid ABCD with bases AD and $\mathrm{BC}, \angle A=90^{\circ}$, and $\angle D=45^{\circ}$. It is also known that $A B=10 \mathrm{~cm}$, and $A D=$ $3 B C$. Find the area of the trapezoid.
9. In a right triangle $A B C, B C$ is the hypotenuse. Draw $A D$ perpendicular to $B C$, where $D$ is on $B C$. The length of $B C=13$, and $A B=5$. What is the length of $A D$ ?
