MATH 7: HOMEWORK 11

Introduction to quadratic equation.

January 9, 2021

1. Quadratic equation in a standard form.

Today we discussed how one solves quadratic equation, starting from the standard form: $a x^{2}+b x+c=0$ A quadratic equation could have no solution, one solution, or two solutions depending on the coefficients $a, b, a n d$.

We could solve such an equation by presenting it in a factored form: $\left(x-x_{1}\right)\left(x-x_{2}\right)=0$, where x_{1} and x_{2} are the solutions of the equation, also known as roots. The factored form will also help us find a general formula for solving any quadratic equation using the coefficients a, b, c.
2. Solving the incomplete quadratic equation by factorizing.
$>$ When $c=0, a x^{2}+b x=0$
To solve, factorize as $x(a x+b)=0$ and the two terms in the product to be equal to zero. The two roots are $x_{1}=0$ and $x_{2}=-b / a$
$>$ When $b=0, a x^{2}+c=0$
If $\mathrm{c}<0$, factorize the equation using the formula for fast multiplication $a^{2}-b^{2}=(a-b)(a+b)$. (*) For example, $x^{2}-25=0 \Rightarrow x^{2}-5^{2}=0 \Rightarrow(x-5)(x+5)=0$. Setting each term in the product to zero gives solutions of +5 and -5 .

If $\mathrm{c}>0$, there are no real solutions. An easy way to see this is to solve directly for x : $x^{2}+25=0 \Rightarrow x^{2}=-5^{2}$; No number squared is equal to a negative number!

2. Solving the complete quadratic equation

> By completing the square

"Completing the square" works by using the formulas for fast multiplication ($a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$ (*)
Here is an example how to rewrite the standard form of an equation to factorized form by completing the square:

$$
x^{2}+6 x+2=x^{2}+2 \cdot 3 x+9-9+2=(x+3)^{2}-7=(x+3)^{2}-(\sqrt{7})^{2}=(x+3+\sqrt{7})(x+3-\sqrt{7})
$$

Thus, $x^{2}+6 x+2=0$ if and only if $(x+3+\sqrt{7})=0$, which gives $x=-3-\sqrt{7}$, or $(x+3-\sqrt{7})=0$, which gives $x=-3+\sqrt{7}$.

By using the quadratic formula

Completing the square works in general for any quadratic equation in a standard form If $a=1$, then:

$$
\begin{equation*}
x^{2}+b x+c=x^{2}+2 \frac{b}{2} x+c=\left(x^{2}+2 \frac{b}{2} x+\frac{b^{2}}{2^{2}}\right)-\frac{b^{2}}{2^{2}}+c=\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}-4 c}{2^{2}}=\left(x+\frac{b}{2}\right)^{2}-\frac{D}{2^{2}} \tag{1}
\end{equation*}
$$

Thus $x^{2}+b x+c=0$ is equivalent to: $\left(x+\frac{b}{2}\right)^{2}=\frac{D}{4}$
If $a \neq 1$, then: $a x^{2}+b x+c=0$ is equivalent to: $\left(x+\frac{b}{2 a}\right)^{2}=\frac{D}{4 a^{2}}$, where $\boldsymbol{D}=\boldsymbol{b}^{2}-\mathbf{4 a c}$
The determinant D determines the number of solutions. $\mathrm{D}<0$, there are no real solutions; if $\mathrm{D}=0$, there is one solution,
if $D>0$, the solutions are:

$$
\begin{gather*}
x+\frac{b}{2 a}= \pm \sqrt{\frac{D}{4 a^{2}}} \\
x=\frac{-b \pm \sqrt{D}}{2 a} \tag{2}
\end{gather*}
$$

Homework problems

1. This problem requires that you carefully check your work and think:
a. Use formula (1) to prove that for any $x, \quad x^{2}+b x+c \geq-D / 4$, with equality only when $x=-b / 2$.
b. Find the minimal possible value of the expression $x^{2}+4 x+2$ [Hint: use part a) or complete the square]
c. Given a number $a>0$, find the maximal possible value of the expression $x(a-x)$ (the answer will depend on the value or values of a. In this case, a is called a parameter).
2. Convert the following equations to standard form (open brackets). Determine the coefficients $a, b, a n d c$. Do not solve the equations!
a. $2(x-3)(x-1)=0$
b. $(x-2)^{2}+(2 x+3)^{2}=13-4 x$
c. $(x-4)(x+4)=1$
3. Solve the following quadratic equations by converting to factorized form.
a. $2 x^{2}-3 x=0$
b. $x^{2}-15=1$
c. $3 x^{2}-9=0$
d. $2(x-3)(x-1)=0$
4. Complete the square and find the solutions for the following quadratic equations:
a. $x^{2}+4 x+3=0$
b. $y^{2}+4 y-5=0$
5. Solve the following equations. Carefully think what method you will use and write all steps in your argument. The following questions may help you: is the equation in a standard or in a factored form?; what are the coefficients a, b, c ? Are some of these coefficients zero? Shall I factorize or use the quadratic formula from eq (2)?
a. $x^{2}-5 x+5=0$
b. $\frac{x}{x-2}=x-1$
c. $x^{2}=1+x$
d. $2 x(3-x)=1$
e. $x^{3}+4 x^{2}-45 x=0$
6. If $x+\frac{1}{x}=7$, find $x^{2}+\frac{1}{x^{2}}=7$ and $x^{3}+\frac{1}{x^{3}} \quad$ [Hint: try completing the square, completing the cube ...]
7. (*) Consider the sequence $x_{1}=1, x_{2}=\frac{x_{1}}{2}+\frac{1}{x_{1}}, \quad x_{3}=\frac{x_{2}}{2}+\frac{1}{x_{2}} \ldots$

Compute the first several terms; does it seem that the sequence is increasing? decreasing? approaching some value? If so, can you guess this value? [Hint: solve equation $x=\frac{x}{2}+\frac{1}{x}$]

