MATH 7: HOMEWORK 21
Invariants, and asymptotes
April 3, 2022

1. Definition for \sin and \cos of an angle

As we discussed, for any angle α, we can find invarians : (sine) $\sin \alpha$ and (cosine) $\cos \alpha$

In general, for a right-angle triangle with hypothenuse not equal to 1 , the sina and $\cos \boldsymbol{a}$ of

$$
\sin a=\frac{\text { opposite side }}{\text { hypothenuse }}
$$

$$
\cos a=\frac{\text { adjacent side }}{\text { hypothenuse }}
$$ the angle are defined as:

This is because the definitions on sin and cos do not really depend on size of the triangle, but only the angle itself. Since any two right triangles with the same angles are similar, it shows that if we have a right triangle with angle α and hypotenuse c, then the sides will be $c \sin \alpha$ and $c \cos \alpha$:

Example: Consider the angle a in the following triangles:

$$
\begin{aligned}
& \sin a=\frac{\text { opposite side }}{\text { hypothenuse }}=\frac{4}{5}=\frac{8}{10}=\frac{12}{15} \\
& \cos a=\frac{\text { adjacent side }}{\text { hypothenuse }}=\frac{3}{5}=\frac{6}{10}=\frac{9}{15}
\end{aligned}
$$

Homework problems

1. As we discussed in class, please find

2. Plot these functions, clearly define asymptotes:
a. $y=\frac{1}{x+3}-3$
b. $y=\frac{1}{3-x}-3$
c. $y=x-\frac{1}{x}$
