MATH 7: HOMEWORK 21 Invariants, and asymptotes

April 3, 2022

1. Definition for sin and cos of an angle

As we discussed, for any angle α , we can find invarians : (sine) $sin\alpha$ and (cosine) $cos\alpha$

In general, for a right-angle triangle with hypothenuse not equal to 1, the *sina* and *cosa* of the angle are defined as:

$$sina = \frac{\text{opposite side}}{\text{hypothenuse}}$$

$$cosa = \frac{\text{adjacent side}}{\text{hypothenuse}}$$

This is because the definitions on **sin** and **cos** do not really depend on size of the triangle, but only the angle itself. Since any two right triangles with the same angles are similar, it shows that if we have a right triangle with angle α and hypotenuse α , then the sides will be α and α a

$$sina = \frac{\text{opposite side}}{\text{hypothenuse}} = \frac{c \ sina}{c}$$

$$cosa = \frac{\text{adjacent side}}{\text{hypothenuse}} = \frac{c \ cosa}{c}$$

Example: Consider the angle a in the following triangles: $b = c \cos a$

$$sina = \frac{\text{opposite side}}{\text{hypothenuse}} = \frac{4}{5} = \frac{8}{10} = \frac{12}{15}$$

$$cosa = \frac{\text{adjacent side}}{\text{hypothenuse}} = \frac{3}{5} = \frac{6}{10} = \frac{9}{15}$$

Homework problems

1. As we discussed in class, please find

- $sin(\angle B)$, $cos(\angle B)$,
- $sin(\angle BAD)$,
- $cos(\angle BAD)$
- 2. Plot these functions, clearly define asymptotes:
 - a. $y = \frac{1}{x+3} 3$
 - b. $y = \frac{1}{3-x} 3$
 - c. $y = x \frac{1}{x}$