MATH 7: HOMEWORK 21
Trigonometry, basic definitions.
April 24, 2022

1. Definition for \sin and \cos of an angle For any angle α, we define two numbers: (sine) $\sin \alpha$ and (cosine) $\cos \alpha$ as the length of the two legs (catheti) in a right triangle when the hypothenuse of the triangle is 1 .
$\sin a=\frac{\text { opposite side }}{\text { hypothenuse }}$

$\cos a=\frac{\text { adjacent side }}{\text { hypothenuse }}$

In general, for a right-angle triangle with hypothenuse not equal to 1 , the $\sin a$ and $\cos a$ of the angle are defined as:

This is because the definitions on $\boldsymbol{\operatorname { s i n }}$ and $\boldsymbol{\operatorname { c o s }}$ do not really depend on size of the triangle, but only the angle itself. Since any two right triangles with the same angles are similar, it shows that if we have a right triangle with angle α and hypotenuse c, then the sides will be $c \sin \alpha$ and $c \cos \alpha$:

$$
b=c \cos a
$$

Example: Consider the angle a in the following triangles:

$$
\begin{aligned}
& \sin a=\frac{\text { opposite side }}{\text { hypothenuse }}=\frac{c \sin a}{c} \\
& \cos a=\frac{\text { adjacent side }}{\text { hypothenuse }}=\frac{c \cos a}{c}
\end{aligned}
$$

$\sin a=\frac{\text { opposite side }}{\text { hypothenuse }}=\frac{c \sin a}{c}$

$$
\begin{aligned}
& \sin a=\frac{\text { opposite side }}{\text { hypothenuse }}=\frac{4}{5}=\frac{8}{10}=\frac{12}{15} \\
& \cos a=\frac{\text { adjacent side }}{\text { hypothenuse }}=\frac{3}{5}=\frac{6}{10}=\frac{9}{15}
\end{aligned}
$$

2. Table with values for trigonometric functions

Function	Notation	Definition	0^{0}	30^{0}	45^{0}	60^{0}	90^{0}
sine	$\sin (\mathrm{a})$	$\frac{\text { opposite side }}{\text { hypothenuse }}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosine	$\cos (a)$	$\frac{\text { adjacent side }}{\text { hypothenuse }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Homework problems

All angles are measured in degrees.

1. Which one is greater?
a. 0 or $\sin 0^{0}$
b. 1 or $\sin 30^{\circ}$
c. $\sin 45^{\circ}$ or $\cos 45^{\circ}$
d. $\cos 60^{\circ}$ or $\sin 30^{\circ}$
2. A tree casts a 60 m long shadow when the angle of elevation of the sun is 30°. How tall is the tree? [Angle of elevation is the angle that line from tip of shadow on ground to top of tree makes with the horizontal.]
3. A ladder of length L is resting on a ledge whose height is half of the ladder's length. The ladder makes a 45° angle with the ground. Express answers in terms of L .
a. How long is the portion of the ladder between the ground and the point of contact of ledge and ladder? [indicated by a long dashed arrow]
b. At what height is the top of ladder above the ledge? [indicated by short dashed arrow - this is another right triangle.]

4. A cruise ship travels north for 3 miles and then north-west for another 3 miles. How far will it end up from its original position (from the start to the end point). [Note: North-east is the direction that bisects the angle between north and east.]
5. A ship travels for 3 miles north, then turns and goes for 2 miles northeast, then for another 5 miles north-northeast. Where will it be at the end - how far east and north of the original position? [Northeast means that its direction bisects the angle between north and east directions, thus forming an angle of 45° with due north. North-northeast means that this direction bisects the angle between north and north-east, thus forming 22.5° angle with due north.]

6. Consider a regular pentagon inscribed in a circle of radius 1 . What is the side length of such a pentagon? [Hint: drop a perpendicular from the center to one of the sides and complete it to form a right triangle.]
7. $\left(^{*}\right)$ Consider a parallelogram $A B C D$ with $A B=1, A D=3, \angle A=40^{\circ}$. Find the lengths of diagonals in this parallelogram.
8. Prove that the area of a triangle $A B C$ can be computed using the formula $A=\frac{1}{2} \cdot A B \cdot A C \cdot \sin \angle A$. [Hint: what is the altitude from vertex B ?]
9. What is the area of a regular pentagon inscribed in a circle of radius 10? [Make sure to use a trigonometric function.]
