1. Definition for \sin and \cos of an angle

In general, for a right-angle triangle, the $\sin \alpha$ and $\cos \alpha$ of the angle are defined as:

$$
\sin (\alpha)=\frac{\text { opposite side }}{\text { hypothenuse }}=\frac{a}{c}, \quad \cos (\alpha)=\frac{\text { adjacent side }}{\text { hypothenuse }}=\frac{b}{c}
$$

2. Definition of tangent of an angle

Now we can also define the 3rd trigonometric ratio:

$b=c \cos \alpha$

$$
\tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)}=\frac{\text { opposite side/hypothenuse }}{\text { adjacent side/hypothenuse }}=\frac{a}{b}
$$

Example: Consider the angle a in the following triangles:

$$
\begin{aligned}
& \sin (\alpha)=\frac{\text { opposite side }}{\text { hypothenuse }}=\frac{4}{5}=\frac{8}{10}=\frac{12}{15} \\
& \cos (\alpha)=\frac{\text { adjacent side }}{\text { hypothenuse }}=\frac{3}{5}=\frac{6}{10}=\frac{9}{15} \\
& \tan (\alpha)=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{4}{3}=\frac{8}{6}=\frac{12}{9}
\end{aligned}
$$

3. Table with values for trigonometric functions

Function	Notation	Definition	0^{0}	30^{0}	45^{0}	60^{0}	90^{0}
sine	$\sin (\alpha)$	$\frac{\text { opposite side }}{\text { hypothenuse }}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosine	$\cos (\alpha)$	$\frac{\text { adjacent side }}{\text { hypothenuse }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
\tan	$\tan (\alpha)$	$\frac{\text { opposite side }}{\text { adjacent side }}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

4. Trigonometric identities and the law of sines

- The most prominent trigonometric identity: $\boldsymbol{\operatorname { s i n }}^{2} \alpha+\boldsymbol{\operatorname { c o s }}^{2} \alpha=\mathbf{1}$

Proof: Pythagoras theorem for Fig1 gives $a^{2}+b^{2}=c^{2} ;(c \sin (\alpha))^{2}+(c \cos (\alpha))^{2}=c^{2}$; then divide both sides by c^{2} to obtain the identity.

- The law of sines: Given a triangle $\triangle \mathrm{ABC}$ with sides a, b, and c, the following is always true:

$$
\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}
$$

Proof: To see why the Law of Sines is true, refer to the figure. The height of the triangle $h=b \sin (C)$, and therefore the area is: $S=\frac{1}{2} a \times b \sin (C)$. Similarly, $h=c \sin (A)$ and $S=\frac{1}{2} a \times c \sin (B)$. Constructing a height towards side b , $S=\frac{1}{2} b \times c \sin (A)$. Thus, $b c \sin (A)=a c \sin (B)=a b \sin (C)$. Divide by $a b c$,
 to get the law.

Homework problems

All angles are measured in degrees.

1. If a right triangle $\triangle \mathrm{ABC}$ has sides $A B=3 \times \sqrt{3}$ and $B C=9$, and side $A C$ is the hypotenuse, find all 3 angles of the triangle.
2. The area of a right triangle is 36 square meters. The legs of the triangle have the ratio of $2: 9$. Find the hypotenuse of the triangle.
3. In a triangle $\triangle A B C$, we have $\angle A=40^{\circ} ; \angle B=60^{\circ}$, and $A B=2 \mathrm{~cm}$. What is the remaining angle and side lengths? (Hint: Use Law of sines)
4. In an isosceles triangle, the angle between the equal sides is equal to 30°, and the height is 8 . Find the sides of the triangle.
5. A right triangle $\triangle A B C$ is positioned such that A is at the origin, B is in the 1 st quadrant (coordinates $B x>0$ and $B y>0$) and C is on the positive horizontal axis ($C x>0$ and $C y=0$). If length of side $A B$ is 1 , and $A B$ makes a 35° angle with positive x-axis, what are the coordinates of B ?
6. Consider a parallelogram $A B C D$ with $A B=10, A D=4$ and $\angle B A D=50^{\circ}$. Find the length of diagonal $A C$. (Hint: make $\triangle A C M$, where $<M$ is 90° and point M is on the same line as $C D$)
7. A regular heptagon (7 sides) is inscribed into a circle of radius 1.
a. What is the perimeter of the heptagon?
b. What is the area of the heptagon?
8. In the trapezoid $A B C D, A D=5 \mathrm{~cm}, A B=2 \mathrm{~cm}$, and $\angle A=\angle D=70^{\circ}$. Find the length $B C$ and the diagonals. [You can use: $\sin \left(70^{\circ}\right) \approx 0: 94 ; \cos \left(70^{\circ}\right) \approx 0: 34$.]

9. To determine the distance to the enemy gun (point E in the figure below), the army unit placed two observers (points A, B in the figure below) and asked each of them to measure the angles using a special instrument. The results of the measurements are shown below. If it is known that the distance between the observers is 400 meters, can you determine how far away from observer A is the enemy gun?

