SOLVED PROBLEMS FACTORISATIONS, SQUARE DIFFS

Factoring using the perfect squares, square diffs, etc

1. Factorize

(a)
$$3x^3 - x^2y + 6x^2y - 2xy^2 + 3xy^2 - y^3$$

(b)
$$a^2 - b^2 - 10b - 25$$

(c)
$$x^4 + 4$$

(d)
$$x^4 + 64$$

(e)
$$64 - a^8b^8$$

(f)
$$a^4 - 100$$

(g)
$$\frac{1}{9}x^2 - 25$$

(h)
$$a^9 - 27$$

(i)
$$(x-2)^2 - (y+3)^2$$

(j)
$$4x^2 + 8xy + 4y^2$$

(k)
$$4x^2 + 12xy + 9y^2$$

(l)
$$(x-2)^2 - 10(x-1) + 25$$

(m)
$$t^3 - t^2 + t - 1$$

(n)
$$t^3 - t^2 - t + 1$$

(o) rationalize the denominator:

i.
$$\frac{4}{\sqrt{2}+\sqrt{5}}$$
 ii. $\frac{4}{\sqrt{2}-\sqrt{5}}$

(p) rationalize the denominator:

i.
$$\frac{x^2y}{\sqrt{x}-\sqrt{y}}$$

ii.
$$\frac{x^2y}{x-\sqrt{y}}$$

ii.
$$\frac{x^2y}{x-\sqrt{y}}$$

iii.
$$\frac{x^2y}{\sqrt{x}-y}$$

(q) rationalize the denominator: $\frac{1}{a-\sqrt[3]{b}}$

- 2. The real numbers x and y satisfy the equation $x^2 + y^2 = 10x 6y 34$. What is x + y?
- 3* The number $2^{48} 1$ is exactly divisible by two numbers between 60 and 70. Find the numbers.
- 4* Is the number

$$x = 2222^{5555} + 5555^{2222} = (2222^5)^{1111} + (5555^2)^{1111}$$

divisible by 7?