

CHAPTER 7

Trigonometric Functions						
Function	Notation	Definition	0	30	45	60
Sine	$\sin (\alpha)$	$\frac{\text { opposite side }}{\text { hypotenuse }}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
Cosine	$\cos (\alpha)$	$\frac{\text { adjacent side }}{\text { hypotenuse }}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
Tangent	$\tan (\alpha)$	$\frac{\text { opposite side }}{\text { adjacent side }}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

7.1 Unit Circle

The unit circle is divided into four quadrants corresponding the the quadrants of the XOY coordinate system. The angles are measured counterclockwise starting from the positive x-axis. Thus, in the first quadrant the angles measure between 0 and 90 degrees, in the 2 -nd quadrant between 90 and 180 degrees, in the 3 -nd quadrant between 180 and 270 degrees, in the 4 -th quadrant between 270 and 360 degrees. We consider the angles measured in the clockwise sense to be negative. When using the unit circle formulation (or looking at trigonometric functions on the Cartesian Coordinate System) we usually use radian measure rather than degree measurement. Radians are simply another unit for measuring the size of an angle. To convert from degrees to radians and back use the circumference of a circle, $2 \pi R$. For the unit circle it becomes 2π. So

$$
\begin{gathered}
2 \pi \text { radians }=360 \rightarrow \pi \text { radians }=180 \\
x \text { degrees }=\frac{x}{180} \pi \text { radians and } x \text { radians }=180 \dot{x} \text { degrees }
\end{gathered}
$$

(a) Trigonometric Circle (b) Right Triangle

Correspondence : (\mathbf{x}, \mathbf{y}) points on the unit circle $(\cos (\theta), \sin (\theta))$
We take in the XOY Cartesian plane coordinate system the circle of radius 1, centered in the origin. We take a $P(x, y)$ on the circle in the first quadrant. Drawing its x-coordinate, and y-coordinate we can construct a right-angled triangle with O at the origin. We will call θ the angle between the positive x axis and the hypotenuse.

Recall that

$$
(x, y)=(\cos (\theta), \sin (\theta))
$$

By definition

$$
\cos (\theta)=\frac{\text { adjacent side }}{\text { hypotenuse }}=\frac{x}{1} \rightarrow x=\cos (\theta), \text { and } \sin (\theta)=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{y}{1} \rightarrow y=\sin (\theta)
$$

7.2 Trigonometric identities

The trigonometric identities are very useful whenever you are simplifying or solving trigonometric expressions, or finding the measures of more angles. Most of the identities come directly from the Pythagorean Theorem, and a little algebra.
First,

$$
\sin ^{2}(\theta)+\cos ^{2}(\theta)=1, \text { for any angle } \theta
$$

We just need to apply Pythagorean Th. in $\triangle O P Q: O P^{2}=x^{2}+y^{2} \rightarrow 1=\cos ^{2}(\theta)+\sin ^{2}(\theta)$ The other elementary trigonometric identity is

$$
\tan (\alpha)=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{\text { opposite side }}{\text { hypotenuse }} \times \frac{\text { hypotenuse }}{\text { adjacent } \operatorname{side}}=\frac{\sin (\alpha)}{\cos (\alpha)}
$$

We also recall :

$$
\tan (\alpha)=m_{O P}, \text { the tangent equals the slope of the hypotenuse OP }
$$

7.3 The sine and the cosine from quadrant to quadrant

Let us take $\theta=30$, and the point P on the circle of coordinates $(\cos (30), \sin (30))$.
Let us move point P around the circle until it arrives in the second quadrant and it makes an angle of 150 with the positive x-axis $: \sin (30)=\sin (150)=0.5$ and $\cos (150)=-\cos (30)=-\frac{\sqrt{3}}{2}$. Let us move the point P around the circle until it arrives in the third quadrant and it makes an angle of 210 with the positive x-axis : $\sin (210)=-\sin (150)=-\sin (30)=-0.5$ and $\cos (210)=\cos (150)=-\cos (30)=-\frac{\sqrt{3}}{2}$. Let us move the point P around the circle until it arrives in the fourth quadrant and it makes an angle of 330 with the positive x-axis : $\sin (330)=-\sin (30)=-0.5$ and $\cos (330)=\cos (30)=\frac{\sqrt{3}}{2}$.
In general, we need to find for any θ its the acute reference angle $\theta-180>0$, if $\theta>180$ or $180-\theta$ if $\theta<180$

Table of \tan (angle)

Angle	$\tan (\mathrm{a})$						
0.0	0.00	25.0	. 4663	46.0	1.0355	71.0	2.9042
1.0	.0175	26.0	. 4877	47.0	1.0724	72.0	3.0777
2.0	. 0349	27.0	. 5095	48.0	1.1106	73.0	3.2709
3.0	. 0524	28.0	. 5317	49.0	1.1504	74.0	3.4874
4.0	. 0699	29.0	. 5543	50.0	1.1918	75.0	3.7321
5.0	. 0875	30.0	. 5773	51.0	1.2349	76.0	4.0108
6.0	. 1051	31.0	. 6009	52.0	1.2799	77.0	4.3315
7.0	. 1228	32.0	. 6249	53.0	1.3270	78.0	4.7046
8.0	. 1405	33.0	. 6494	54.0	1.3764	79.0	5.1446
9.0	. 1584	34.0	. 6745	55.0	1.4281	80.0	5.6713
10.0	. 1763	35.0	. 7002	56.0	1.4826	81.0	6.3138
11.0	. 1944	36.0	. 7265	57.0	1.5399	82.0	7.1154
12.0	. 2126	37.0	. 7535	58.0	1.6003	83.0	8.1443
13.0	. 2309	38.0	. 7813	59.0	1.6643	84.0	9.5144
14.0	. 2493	39.0	. 8098	60.0	1.7321	85.0	11.430
15.0	. 2679	40.0	. 8391	61.0	1.8040	86.0	14.301
16.0	. 2867	41.0	. 8693	62.0	1.8907	87.0	19.081
17.0	. 3057	42.0	. 9004	63.0	1.9626	88.0	28.636
18.0	. 3249	43.0	. 9325	64.0	2.0503	89.0	57.290
19.0	. 3443	44.0	. 9657	65.0	2.1445	90.0	infinite
20.0	. 3640	45.0	1.000	66.0	2.2460		
21.0	. 3839			67.0	2.3559		
22.0	. 4040			68.0	2.4751		
23.0	. 4245			69.0	2.6051		
24.0	. 4452			70.0	2.7475		

Source of drawings : The International Centre of Excellence for Education in Mathematics (ICE-EM), Source of Trigonometric Tables : www.grc.nasa.gov, licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License http://creativecommons.org/licenses/by-nc-nd/3.0/

7.4 Problems

1. Use the reference angle θ to determine $\sin (195), \sin (210), \cos (120)$.
[195 is in the 3 -rd quadrant $195 \geq 180$ then $195-180=15$ and $\sin (190)=-\sin (15)=-.2528$]
2. Using angles from all the four quadrants, write all the expressions equivalent to $\cos (120)$.
3. Use the reference angle θ to determine $\cos (-120)$. $[\cos (-120)=\cos (-120+360)=\cos (240)=-\cos (240-180)=-\cos 60(240$ is in the 3-rd quadrant $)]$
4. Write all the sine and cosine values equal to $\sin (180)$.
5. For which values from 0 to 360 is $\tan (\theta)$ undefined?
6. Draw on the trigonometric circle the angle 60 and find the coordinates of the point $P(\cos (60), \sin (60))$.
7. Draw on the trigonometric circle the angle 240 and find the coordinates of the point $P(\cos (240), \sin (240))$.
8. Evaluate the expressions $\sin ^{2}(\theta)+\cos ^{2}(\theta)$ and $\sin ^{2}(2 \theta)+\cos ^{2}(2 \theta)$
9. Simplify the expression $\frac{\cos ^{2}(\theta)}{\tan (\theta)}$
10. Simplify the expression $\frac{1-\sin ^{2}(\theta)}{\cos ^{2}(\theta)}$
11. Simplify the expression $\frac{\sin (\theta)}{\cos (\theta) \cdot \tan (\theta)}$
