CHAPTER 15

GRAPHING QUADRATIC POLYNOMIAL FUNCTIONS

15.1 Shape of quadratic graphs and end behavior of polynomial functions

Recall: End behavior of a polynomial. Axes of Symmetry

We have two cases x becomes larger, and larger in the positive direction, denoted by $x \rightarrow \infty$, and x becomes larger, and larger in the negative direction, denoted by $x \rightarrow-\infty$

Examples

- $x^{2},-x^{2}, x^{4},-x^{4}$ (identify points/axes of symmetry)
- $x^{3},-x^{3}, x^{5},-x^{5}$ (identify points/axes of symmetry)

In general, the end behavior is determined by the term that contains the highest power of x, called the leading term. Why? Because when x is large, all the other terms are small compared to the leading term.

What happens in the middle of the graph of a quadratic function?
In some locations the graph behavior changes. A turning point is a point at which the function values change from increasing to decreasing or decreasing to increasing.

Method 1

Due to the symmetry of the parabola, the turning point lies halfway between the x-intercepts. As a consequence, if there is only one x-intercept, then the x-intercept is exactly the turning point.

Examples:

$x^{2}, x^{2}+4 x+4, x^{2}+3 x+2$

Method 2

The first method works if the x-intercepts exist. However, if we re-write the quadratic polynomial function as we did in the "completing the square" we have

$$
y=f(x)=a(x-h)^{2}+k, \text { and its turning point is }(x, y)=(h, k)
$$

or more precisely

$$
\boldsymbol{a}\left(x+\frac{b}{2 a}\right)^{2}-\frac{D}{4 a^{-}}, \text {and its turning point is }(x, y)=\left(-\frac{b}{2 a},-\frac{D}{4 a^{\tau}}\right)
$$

Examples:

$x^{2}, x^{2}+2 x+4, x^{2}+3 x+2$

Axis of symmetry

The axis of symmetry is a useful line to find since it gives the x-coordinate of the vertex of the parabola which is its turning point discussed above. We can complete the square on the general quadratic polynomial function and thereby obtain a general formula for the axis of symmetry and hence the x-coordinate for the vertex.

$$
a\left(x+\frac{b}{2 a}\right)^{2}=\frac{D}{4 a}, \text { and its vertex is }(x, y)=\left(-\frac{b}{2 a^{\prime}},-\frac{D}{4 a^{\prime}}\right)
$$

This expression shows that the minimum (or maximum in the case when a is negative) occurs when the first bracket is zero, that is, when $x=-\frac{b}{2 a}$.

15.2 Classwork

Given the polynomial functions

1. $f(x)=(x-1)(x+2)(x-3)$,
2. $f(x)=(x-4)(x+5)$
3. $f(x)=(x-4)^{2}$
express the function as a polynomial in general form and determine the leading term, degree, and its end behavior. Determine the turning point/ parabola vertex for the last two functions and try to sketch their graph.

15.3 Sketch a graph of a quadratic polynomial function using its zeroes

Find the roots:

$$
y=f(x)=x^{2}+x-2
$$

Find the roots of the polynomial function of second degree (that is, the zeros of the quadratic equation):

$$
f(x)=(x+2)(x-1)
$$

The roots are x-intercepts: $(-2,0),(1,0)$.

Axis of symmetry and turning point:

Halfway between the x-intercepts:

$$
\begin{gathered}
x_{t}=-\frac{b}{2 a}=-\frac{1}{2}=-0.5 \\
\Longrightarrow y_{t}=(-0.5)^{2}-0.5-2=-0.25-2=-2.25
\end{gathered}
$$

End behavior:

$$
\begin{gathered}
x \rightarrow \infty \Longrightarrow f(x) \rightarrow \infty, f(x)>0 \\
x \rightarrow-\infty \Longrightarrow f(x) \rightarrow \infty, f(x)>0
\end{gathered}
$$

x	$-\infty$		-2		-0.5		+1		$+\infty$
$(x+2)$									
$(x-1)$									
$f(x)=(x+2)(x-1)$									

We take test points in these intervals to determine the signs.
For example, test point for

$(-\infty,-2)$	$:$	$x=-3$
$(-2,-0.5)$	$:$	$x=-1$
$(-0.5,1)$	$:$	$x=0$
$(1, \infty)$	$:$	$x=2$

Figure 15.1: Graph of $f(x)=(x+2)(x-1)$

15.4 Worked out examples

Examples for turning point/ parabola vertex:
$x^{2}, x^{2}+4 x+4, x^{2}+3 x+2$

Method 1: Symmetry

- The x-intercept is found by letting $y=f(x)=0$. So, $0=x^{2} \Longrightarrow x=0$. There is only one x-intercept, so that gives the x -coordinate of the turning point. To find the y -coordinate, substitute it into the quadratic equation. $f(0)=0^{2} \Longrightarrow y=0$. Thus, the turning point is $(\mathrm{x}, \mathrm{y})=(0,0)$.
- $x^{2}+4 x+4=(x+2)^{2}$ There is only one x -intercept, so that gives the x -coordinate of the turning point.
- $x^{2}+3 x+2=(x+1)(x+2)$. So, there are two roots, thus two distinct x-intercepts: $x=-1$ or $x=-2$. To find the x-coordinate of the turning point, average the x-intercepts. So, $x_{t p}=\frac{(-1)+(-2)}{2}=-\frac{3}{2}$. To find its y-coordinate, substitute this value into the equation: $y_{t p}=\left(-\frac{3}{2}\right)^{2}+3\left(-\frac{3}{2}\right)+2=\frac{9}{4}-\frac{9}{2}+2=-\frac{1}{4}$. Thus, the coordinates of the turning points are $(x, y)=\left(-\frac{3}{2},-\frac{1}{4}\right)$.

Method 2: Completing to Square, Discriminant Formula

- For x^{2}, if we complete the square, we obtain: $(x-0)^{2}+0$. So, its turning point is $(x, y)=(0,0)$.
- For $x^{2}+3 x+2$, if we complete the square, we obtain: $y=x^{2}+3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+2=\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+2=$ $\left[x-\left(-\frac{3}{2}\right)\right]^{2}-\frac{1}{4}$. So, the turning point is $(x, y)=\left(-\frac{3}{2},-\frac{1}{4}\right)$.

Example of using the zeroes to graph a quadratic polynomial function

x	$-\infty$	-3	-2	-1	-0.5	0	+1	+2	$+\infty$
$(x+2)$	$-\infty$	-1	0	+1	+1.5	+2	+3	+4	$+\infty$
$(x-1)$	$-\infty$	-4	-3	-2	-1.5	-1	0	+1	$+\infty$
$f(x)=(x+2)(x-1)$	$+\infty$	+4	0	-2	-2.25	-2	0	+4	$+\infty$

15.5 Homework

- For what values of " b " has the polynomial function $x^{2}+b x+14$ no real numbers roots? exactly one root? two distinct real numbers roots?
- Solve the following inequalities using a table similar to one used for graphing quadratic functions:

1. $x^{2}-x+6 \geq 0$
2. $\frac{2 x+1}{x-5} \leq 0$
3. $x(x-2)(x+18) \geq 0$
4. $x^{2}+x \geq 0$
5. $x^{2}-5 x+6 \leq 0$
6. $\left|x^{2}-x\right|>1$

- Sketch the graphs of the following functions and relations:

1. $x+y=1$
2. $y=x^{2}+x$
3. $y=x^{2}-5 x+6$
4. $y=(x-2)(x+18)$
5. $|x+y|=4$
6. $y=|x+1|-|x-1|$
7. $y=\left|x^{2}-x\right|$
8. $x^{2}+4 x+y^{2}-4 y=0$
