24.1 Homework

This is the last homework of our class, let's get it spinning!

1. Give the minimum angle to carry an equilateral triangle onto itself, using a clockwise rotation around the center of the circle passing through its vertices.
2. Same question for a square.
3. Same question for a pentagon.
4. Consider the figure $A B C D$ with $A(6,4), B(1,3), C(2,2)$ and $D(4,2)$. Determine the coordinates of the figure $E F G H$ obtained by rotating $A B C D$ about the origin with 90° clockwise.
5. Recall that isometries are transformations that preserve distances. Justify why rotations are isometries as follows: take two points A and B at different distances from another point O and an angle α - to keep things simple consider α greater than $\widehat{A O B}$. Rotate A about O with α to obtain A^{\prime} and do the same for B^{\prime}. How are triangles $\triangle A O B$ and $\Delta A^{\prime} O B^{\prime}$ and why? Hint: use SAS (side, angle (which angle?, why?), side). Conclude.
6. Prove the equivalencies
(a) 90° counterclockwise rotation about the origin $\Longleftrightarrow(x, y) \mapsto(-y, x)$
(b) 180° counterclockwise rotation about the origin $\Longleftrightarrow(x, y) \mapsto(-x,-y)$
(c) 90° clockwise rotation about the origin $\Longleftrightarrow(x, y) \mapsto(y,-x)$

Hint: you can prove that a point A^{\prime} is the image by some rotation of a point A about some other point O and with an angle α by simply showing that they respect the definition: you show that $O A=O A^{\prime}$ and that $\widehat{A O A^{\prime}}$ is the angle α. Here you can go coordinate by coordinate and then conclude with e.g. Pythagoras.

