CHAPTER 24.

ROTATIONS

24.1 Homework

This is the last homework of our class, let's get it spinning!

- 1. Give the minimum angle to carry an equilateral triangle onto itself, using a clockwise rotation around the center of the circle passing through its vertices.
- 2. Same question for a square.
- 3. Same question for a pentagon.
- 4. Consider the figure ABCD with A(6,4), B(1,3), C(2,2) and D(4,2). Determine the coordinates of the figure EFGH obtained by rotating ABCD about the origin with 90° clockwise.
- 5. Recall that isometries are transformations that preserve distances. Justify why rotations are isometries as follows: take two points A and B at different distances from another point O and an angle α to keep things simple consider α greater than \widehat{AOB} . Rotate A about O with α to obtain A' and do the same for B'. How are triangles ΔAOB and $\Delta A'OB'$ and why? Hint: use SAS (side, angle (which angle?, why?), side). Conclude.
- 6. Prove the equivalencies
 - (a) 90° counterclockwise rotation about the origin $\iff (x, y) \mapsto (-y, x)$
 - (b) 180° counterclockwise rotation about the origin $\iff (x, y) \mapsto (-x, -y)$
 - (c) 90° clockwise rotation about the origin $\iff (x, y) \mapsto (y, -x)$

Hint: you can prove that a point A' is the image by some rotation of a point A about some other point O and with an angle α by simply showing that they respect the definition: you show that OA = OA' and that $\widehat{AOA'}$ is the angle α . Here you can go coordinate by coordinate and then conclude with e.g. Pythagoras.