MATH 7
 ASSIGNMENT 3: LINEAR AND QUADRATIC EQUATIONS

The simplest types of algebraic equations are linear and quadratic equations. You will review/practice solving linear equations and systems of linear equations in your homework. We also introduce a first method to solve quadratic equations: using Vieta's formulas.

1. Linear Equations

Any equation of the form $a x+b=0$ has a simple, unique solution:

$$
x=-\frac{b}{a} .
$$

2. Systems of Linear Equations

Sometimes we have two variables which should satisfy two equations simultaneously. This is called a system of linear equations:

$$
\begin{gather*}
a x+b y=c \tag{1}\\
d x+e y=f \tag{2}
\end{gather*}
$$

where the variables are x and y. One can solve it by substitution: from equation (1),

$$
y=\frac{c-a x}{b} .
$$

substituting this equation (2), we get a linear equation!,

$$
d x+e\left(\frac{c-a x}{b}\right)=f \Rightarrow\left(d-\frac{e a}{b}\right) x+\left(\frac{e c}{b}-f\right)=0
$$

One can solve this for x, and then use that answer to find y.

3. Vieta formulas

If an equation $p(x)=0$ has root x_{1} (i.e., if $p\left(x_{1}\right)=0$), then $p(x)$ is divisible by $\left(x-x_{1}\right)$, i.e. $p(x)=$ $\left(x-x_{1}\right) q(x)$ for some polynomial $q(x)$. In particular, if $x_{1} ; x_{2}$ are roots of quadratic equation $a x^{2}+b x+c=0$, then $a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)$. Therefore,

$$
\begin{aligned}
x_{1}+x_{2} & =-\frac{b}{a} \\
x_{1} x_{2} & =\frac{c}{a}
\end{aligned}
$$

These formulas are called Vieta Formulas. They can be used to find the solutions of a quadratic equation.

Homework

1. Solve the following equations:
(a) $\frac{x+3}{x+1}=4$
(b) $2 x+25=5 x+10$
(c) $\frac{x}{2}+1=\frac{4 x}{7}$
(d) $x=\frac{x}{4}+6$
(e) $x+2(x-5)=\frac{1}{2}(x+3)$
2. The pet store sells parrots and canaries. A canary costs twice as much as a parrot. One customer bought 5 canaries and 3 parrots, while the other bought 3 canaries and 5 parrots. One of the customers paid $\$ 20$ more than the other. How much does each bird cost?
3. The teacher asked the students to multiply a given number by 4 and then add 15 . However, one of the students multiplied the number by 15 and then added 4 - and still got the correct answer. What number was it?
4. Solve the following systems of equations
(a)

$$
\begin{aligned}
x & =5 \\
20 x+5 y & =100
\end{aligned}
$$

(b)

$$
\begin{aligned}
-8 x+y & =-4 \\
-21 x+2 y & =-13
\end{aligned}
$$

(c)

$$
\begin{aligned}
& 7 x-3 y=27 \\
& 5 x-6 y=0
\end{aligned}
$$

(d)

$$
\begin{aligned}
2(x-2)-3(x+y) & =3 \\
(x+1)(y-2) & =x y-9
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \frac{2 x-1}{5}+\frac{3 y-2}{4}=2 \\
& \frac{3 x+1}{5}-\frac{3 y+2}{4}=0
\end{aligned}
$$

5. Let a and b be some numbers. Use the formulas discussed in previous classes to express the following expressions using only $(a+b)=x$ and $a b=y$.
Example: Let's express $a^{2}+b^{2}$ using only $a+b$ and $a b$. We know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$. From here, we get:

$$
a^{2}+b^{2}=(a+b)^{2}-2 \times a b=x^{2}-2 \times y
$$

(a) $(a-b)^{2}$
(b) $\frac{1}{a}+\frac{1}{b}$
(c) $a-b$
(d) $a^{2}-b^{2}$
(e) $a^{3}+b^{3}$ (Hint: first compute $\left.(a+b)\left(a^{2}+b^{2}\right)\right)$
6. Let x_{1}, x_{2} be roots of the equation $x^{2}+5 x-7=0$. Find
(a) $x_{1}^{2}+x_{2}^{2}$
(b) $\left(x_{1}-x_{2}\right)^{2}$
(c) $\frac{1}{x_{1}}+\frac{1}{x_{2}}$
(d) $x_{1}^{3}+x_{2}^{3}$
7. Solve the following equations:
(a) $x^{2}-5 x+6=0$
(b) $x^{2}=1+x$
(c) $\sqrt{2 x+1}=x$
(d) $x+\frac{1}{x}=3$
8. Solve the equation $x^{4}-3 x^{2}+2=0$
9. (a) Prove that for any $a>0$, we have $a+\frac{1}{a} \geq 2$, with equality only when $a=1$.
(b) Show that for any $a, b \geq 0$, one has $\frac{a+b}{2} \geq \sqrt{a b}$. (The left hand side is usually called the arithmetic mean of a, b; the right hand side is called the geometric mean of a, b.)

