MATH 7
 ASSIGNMENT 19: MATHEMATICAL INDUCTION

APR 3, 2022

Mathematical Induction

Consider the following statement: the sum of the first n positive integers is equal to $\frac{n(n+1)}{2}$. This is true for all n. How do we prove it?

One important method to prove these statements is that of mathematical induction.First we show that it is true for the smallest possible value of n. Indeed, for $n=1$, we can check directly:

$$
1=\frac{1(1+1)}{2}
$$

This is called the initial step. Then we assume that it is true for a certain value $n=k$: the inductive assumption. In this case, it means assuming that

$$
1+2+\ldots+k=\frac{k(k+1)}{2}
$$

Finally, we show that because it is true for $n=k$ then it is true for $n=k+1$. This final step is called the inductive step. This is the hardest step of the proof, and it makes use of the inductive assumption. Here,

$$
1+2+\ldots+k+k+1=\frac{k(k+1)}{2}+k+1=\frac{(k+2)(k+1)}{2}=\frac{(k+1)((k+1)+1)}{2}
$$

and this concludes the proof.
Let us think why we just proved the equality for all n. We proved directly that it is true for $n=1$. And we showed that if it is true for $n=k$ then it is also true for $n=k+1$. Therefore it is also true for $n=2$. Similarly, it follows that the statement is true for $n=3$ and so on! To summarize, the three steps in a proof by induction are:

1. Prove the initial case (like $n=1$)
2. Write down the statement for $n=k$ and assume it is true
3. Show that it follows from the previous step that the statement is true for $n=k+1$

Homework

In all problems, use induction to prove the statements

1. Show that the sum of the first n odd positive integers is $n^{2}: 1+3+5+\ldots+(2 n-1)=n^{2}$.
2. Prove the formula for the sum of terms in a geometric sequence:

$$
1+r+r^{2}+r^{3}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

3. Prove the formula for the sum of squares:

$$
1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

4. Prove that $n^{3}+2 n$ is divisible by 3 for any integer n
5. Prove that $2^{n}+1$ is divisible by 3 for all odd integers n

Optional

1. Prove that $n^{2}-1$ is divisible by 8 for any odd integer n
2. Prove that a convex n-gon (a polygon with n sides) has $\frac{n(n-3)}{2}$ diagonals.
