MATH 7
 ASSIGNMENT 20: FIBONACCI NUMBERS

APR 10, 2022

Fibonacci Numbers

The Fibonacci numbers are a sequence defined by $F_{0}=0, F_{1}=1, F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for all $n \geq 1$. The first few terms are

$$
1,1,2,3,5,8,13,21, \ldots
$$

This simple arithmetic sequence has sparked the interest of mathematicians throughout history and across the world since ancient times! We will see today a few properties of these numbers.

Homework

Somebody buys a pair of rabbits and places them in a pen. The nature of rabbits is such that each month pair of rabbits gives birth to another pair, and they start reproducing

1. once they are 2 months old. How many pairs of rabbits will this person have after one year (assuming that no rabbits die)? [This story is attributed to Leonardo of Pisa, also called Fibonacci, 1202]

2. Use mathematical induction to prove that $F_{1}+F_{2}+\ldots+F_{n}=F_{n+2}-1$ for all $n \geq 1$.
3. Use mathematical induction to prove that $F_{2}+F_{4}+\ldots+F_{2 n}=F_{2 n+1}-1$ for all $n \geq 1$.
4. Use mathematical induction to prove that $F_{1}-F_{2}+F_{3}-F_{4}+\ldots+(-1)^{n} F_{n+1}=(-1)^{n} F_{n}+1$ for all $n \geq 1$.
5. Here we derive a general formula for the terms of the Fibonacci sequence F_{n}
(a) Suppose that the terms are some type of geometric sequence, $F_{n}=a q^{n}$. Then substituting this guess in the recursion relation $F_{n+1}=F_{n}+F_{n-1}$ find the two possible values q_{1} and q_{2} for the common ratio
(b) Now use these two values and suppose that $F_{n}=a q_{1}^{n}+b q_{2}^{n}$. Use the first few terms of the Fibonacci sequence to find a and b.
(c) Use mathematical induction to prove that

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

for all n. The number $\Phi=\frac{1+\sqrt{5}}{2}$ is called the golden ratio and has a long of history too!
(d) If n is really large, can you guess the approximate value of the ratio F_{n+1} / F_{n} ?

Optional

1. Use mathematical induction to prove that $F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+\ldots+F_{n}^{2}=F_{n} F_{n+1}$ for all $n \geq 1$.
2. (a) Which Fibonacci numbers are even? Can you find a pattern?
(b) Prove your claim about which Fibonacci numbers are even.
3. Consider the rectangle with sides 1 and Φ. Show that if we cut from it a 1×1 square, then the remaining rectangle will again have proportions $1: \Phi$.

