MATH 7
 ASSIGNMENT 23: REVIEW TOURNAMENT - INDUCTION: PROGRESSIONS, PASCAL AND FIBONACCI

MAY 8, 2022

Today's battle will review sequences and counting problems which can be proven using induction.

Homework

1. (a) Give an explanation for the formula

$$
1+2+3+\ldots+98+99+100=50 \times 101
$$

then generalize this reasoning to show that, if $a_{n}=a_{1}+(n-1) d$ is an arithmetic progression with initial term a_{1} and common difference d, then

$$
a_{1}+a_{2}+\ldots+a_{n-1}+a_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} .
$$

(b) Now prove the previous equation (part (b)) by induction in n.
(c) Now consider a geometric sequence $a_{n}=a_{1} q^{n-1}$ with initial term a_{1} and common ratio q. Prove by induction in n that

$$
a_{1}+a_{2}+\ldots+a_{n-1}+a_{n}=\frac{a_{1}\left(1-q^{n}\right)}{1-q}
$$

(d) Now prove by induction in n the formula for the sum of squares: if $a_{n}=n^{2}$, then

$$
a_{1}+a_{2}+\ldots+a_{n-1}+a_{n}=\frac{n(n+1)(2 n+1)}{6}
$$

2. Recall the Pascal triangle:

It is defined by the following rule: on each row, the first entry is 1 , the last entry is 1 , and the intermediate ones are the sum of the two entries above it. For example, in the third row from the top, $2=1+1$ and in the fourth row $3=1+2$. The k-th entry in n-th row is denoted by $\binom{n}{k}$. Note that both n and k are counted from 0 , not from 1: for example, $\binom{6}{2}=15$.
(a) There is a general formula for the entries of Pascal's triangle:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!},
$$

where $n!=n \times(n-1) \times \ldots \times 1$ and $0!=1$. Prove this formula by induction in the row position n. [Hint: the main step of your proof should be the identity $\binom{n-1}{k}+\binom{n-1}{k+1}=\binom{n}{k+1}$.]
(b) Now prove the following formula for the sum of all entries in a given row,

$$
\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}
$$

by induction in n. [Hint: use the identity $\binom{n-1}{k}+\binom{n-1}{k+1}=\binom{n}{k+1}$.]
3. The Fibonacci numbers are a sequence defined by $F_{0}=0, F_{1}=1, F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for all $n \geq 1$. The first few terms are

$$
1,1,2,3,5,8,13,21, \ldots
$$

(a) Use mathematical induction to prove that $F_{1}+F_{2}+\ldots+F_{n}=F_{n+2}-1$ for all $n \geq 1$.
(b) Which Fibonacci numbers are even? Can you find a pattern?
(c) Prove your claim about which Fibonacci numbers are even.

