MATH 8: HANDOUT 13

Euclidean geometry tries to describe geometric properties of various figures in the plane. Figures are understood as sets of points; we will use capital letters for points and write $P \in m$ for "point P lies in figure m ", or "figure m contains point P ". The notion of "point" can not be defined: it is so basic that it is impossible to explain it in terms of simpler notions. In addition, there are some other basic notions (lines, distances, angles) that can not be defined. Instead, we can state some basic properties of these objects; these basic properties are usually called "postulates" or "axioms of Euclidean geometry". All results in Euclidean geometry should be proved by deducing them from the axioms; justifications "it is obvious", "it is well-known", or "it is clear from the figure" are not acceptable.

We allow use of all logical rules. We will also use all the usual properties of real numbers, equations, inequalities, etc.

For your enjoyment, take a look at the book which gave rise to Euclidean geometry and much more, Euclid's Elements, dated about 300 BC, and used as the standard textbook for the next 2000 years. Nowadays it is avaialable online at http://math.clarku.edu/~djoyce/java/elements/toc.html

1. Basic objects

These objects are the basis of all our constructions: all objects we will be discussing will be defined in terms of these objects. No definition is given for these basic objects.

- Points
- Lines
- Distances: for any two points A, B, there is a non-negative number $A B$, called distance between A, B.
- Angle measures: for any angle $\angle A B C$, there is a real number $m \angle A B C$, called the measure of this angle (more on this later).
We will also frequently use words "between" when describing relative position of points on a line (as in: A is between B and C) and "inside" (as in: point C is inside angle $\angle A O B$). We do not give full list of axioms for these notions; it is possible, but rather boring.

Having these basic notions, we can now define more objects. Namely, we can give definitions of

- interval, or line segment (notation: $\overline{A B}$): set of all points on line $A B$ which are between A and B, together with points A and B themselves
- ray (notation: $\overrightarrow{A B}$): set of all points on the line $A B$ which are on the same side of A as B
- angle (notation: $\angle A O D$): figure consisting of two rays with a common vertex
- parallel lines: two distinct lines l, m are called parallel (notation: $l \| m$) if they do not intersect, i.e. have no common points. We also say that every line is parallel to itself.

2. First postulates

Axiom 1. For any two distinct points A, B, there is a unique line containing these points (this line is usually denoted $\overleftrightarrow{A B}$).

Axiom 2. If points A, B, C are on the same line, and B is between A and C, then $A C=A B+B C$
Axiom 3. If point B is inside angle $\angle A O C$, then $m \angle A O C=m \angle A O B+m \angle B O C$. Also, the measure of a straight angle is equal to 180°.

Axiom 4. Let line l intersect lines m, n and angles $\angle 1, \angle 2$ are as shown in the figure below (in this situation, such a pair of angles is called alternate interior angles). Then $m \| n$ if and only if $m \angle 1=m \angle 2$.

3. First theorems

Theorem 1. If lines l, m intersect, than they intersect at exactly one point.
Proof. Assume that they intersect at more than one point. Let P, Q be two of the points where they intersect. Then both l, m go through P, Q. This contradicts Axiom 1. Thus, our assumption (that l, m intersect at more then one point) must be false.

Theorem 2. If $l \| m$ and $m \| n$, then $l \| n$
Theorem 3. Let A be the intersection point of lines l, m, and let angles 1,3 be as shown in the figure below (such a pair of angles are called vertical). Then $m \angle 1=m \angle 3$.

Proof. Let angle 2 be as shown in the figure above. Then, by Axiom 3, $m \angle 1+m \angle 2=180^{\circ}$, so $m \angle 1=$ $180^{\circ}-m \angle 2$. Similarly, $m \angle 3=180^{\circ}-m \angle 2$. Thus, $m \angle 1=m \angle 3$.

Theorem 4. Let l, m be intersecting lines such that one of the four angles formed by their intersection is equal to 90°. Then the three other angles are also equal to 90°. (In this case, we say that lines l, m are perpendicular and write $l \perp m$.)
Theorem 5. Let l_{1}, l_{2} be perpendicular to m. Then $l_{1} \| l_{2}$.
Conversely, if $l_{1} \perp m$ and $l_{2} \| l_{1}$, then $l_{2} \perp m$.

4. Parallel Lines and perpendicular lines

Theorem 6. Given a line l and point P not on l, there exists a unique line m through P which is parallel to l.

Theorem 7. Given a line l and a point P not on l, there exists a unique line m through P which is perpendicular to l.

5. Homework

1. Prove Theorem 2.[Hint: assume that l and n are not parallel; then they must intersect at some point P.]
2. Prove Theorem 4.
3. Prove Theorem 5.
4. Prove Theorem 6
5. Prove Theorem 7
6. Suppose that instead of studying geometry on the plane, we study geometry on the sphere (say, Earth surface) and take lines to be equators, i.e. intersections of the sphere with a plane going through the center of the sphere. Which of the axioms will be true in this new, "spherical", geometry? Which will be false? Can you suggest a new set of axioms to describe this geometry?
7. Suppose we draw k lines on the plane so that each of them intersects each other, and all intersection points are distinct. Into how many pieces will they cut the plane?
8. A field guide for identifying plant species consists of a series of questions, each of which can be answered yes or no. Depending on the answer, you are then directed to a different question, or to the final answer. So a typical question looks like this:

Does the flower have 5 petals? If yes, go to question 173 ; if no, go to question 102.
If the field guide covers 372 plant species, how many questions do you think it has? [Hint: this is a problem about graphs.]

