MATH 8: HANDOUT 14

1. Triangles

Theorem 8. Given any three points A, B, C, which are not on the same line, and line segments $\overline{A B}, \overline{B C}$, and $\overline{C A}$, we have $m \angle A B C+m \angle B C A+m \angle C A B=180^{\circ}$. (Such a figure of three points and their respective line segments is called a triangle, written $\triangle A B C$. The three respective angles are called the triangle's interior angles.)

2. Congruence

It will be helpful, in general, to have a way of comparing geometric objects to tell whether they are the same. We will build up such a notion and call it congruence of objects. To begin, we define congruence of angles and congruence of line segments (note that an angle cannot be congruent to a line segment; the objects have to be the same type).

- If two angles $\angle A B C$ and $\angle D E F$ have equal measure, then they are congruent angles, written $\angle A B C \cong \angle D E F$.
- If the distance between points A, B is the same as the distance between points C, D, then the line segments $\overline{A B}$ and $\overline{C D}$ are congruent line segments, written $\overline{A B} \cong C D$.
- If two triangles $\triangle A B C, \triangle D E F$ have respective sides and angles congruent, then they are congruent triangles, written $\triangle A B C \cong \triangle D E F$. In particular, this means $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{C A} \cong \overline{F D}$, $\angle A B C \cong \angle D E F, \angle B C A \cong \angle E F D$, and $\angle C A B \cong \angle F D E$.
Note that congruence of triangles is sensitive to which vertices on one triangle correspond to which vertices on the other. Thus, $\triangle A B C \cong \triangle D E F \Longrightarrow \overline{A B} \cong \overline{D E}$, and it can happen that $\triangle A B C \cong \triangle D E F$ but $\neg(\triangle A B C \cong \triangle E F D)$.

3. Congruence of Triangles

Triangles consist of six pieces (three line segments and three angles), but some notion of constancy of shape in triangles is important in our geometry. We describe below some rules that allow us to, in essence, uniquely determine the shape of a triangle by looking at a specific subset of its pieces.
Axiom 5 (SAS Congruence). If triangles $\triangle A B C$ and $\triangle D E F$ have two congruent sides and a congruent included angle (meaning the angle between the sides in question), then the triangles are congruent. In particular, if $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\angle A B C \cong \angle D E F$, then $\triangle A B C \cong \triangle D E F$.

Other congruence rules about triangles follow from the above: the ASA and SSS rules. However, their proofs are less interesting than other problems about triangles, so we can take them as axioms and continue.

Axiom 6 (ASA Congruence). If two triangles have two congruent angles and a corresponding included side, then the triangles are congruent.

Axiom 7 (SSS Congruence). If two triangles have three sides congruent, then the triangles are congruent.

4. Isosceles triangles

A triangle is isosceles if two of its sides have equal length. The two sides of equal length are called legs; the point where the two legs meet is called the apex of the triangle; the other two angles are called the base angles of the triangle; and the third side is called the base.

While an isosceles triangle is defined to be one with two sides of equal length, the next theorem tells us that is equivalent to having two angles of equal measure.

Theorem 9 (Base angles equal). If $\triangle A B C$ is isosceles, with base $A C$, then $m \angle A=m \angle C$.
Conversely, if $\triangle A B C$ has $m \angle A=m \angle C$, then it is isosceles, with base $A C$.
Proof. Assume that $\triangle A B C$ is isoceles, with apex B. Then by SAS, we have $\triangle A B C \cong \triangle C B A$. Therefore, $m \angle A=m \angle C$.

The proof of the converse statement is left to you as a homework exercise.

In any triangle, there are three special lines from each vertex. In $\triangle A B C$, the altitude from A is perpendicular to $B C$ (it exists and is unique by Theorem 7); the median from A bisects $B C$ (that is, it crosses $B C$ at a point D which is the midpoint of $B C$); and the angle bisector bisects $\angle A$ (that is, if E is the point where the angle bisector meets $B C$, then $m \angle B A E=m \angle E A C)$.

For general triangle, all three lines are different. However, it turns out that in an isosceles triangle, they coincide.
Theorem 10. If B is the apex of the isosceles triangle $A B C$, and $B M$ is the median, then $B M$ is also the altitude, and is also the angle bisector, from B.

Proof. Consider triangles $\triangle A B M$ and $\triangle C B M$. Then $A B=C B$ (by definition of isosceles triangle), $A M=C M$ (by definition of midpoint), and $m \angle M A B=m \angle M C B$ (by Theorem 9). Thus, by SAS axiom, $\triangle A B M \cong \triangle C B M$. Therefore, $m \angle A B M=m \angle C B M$, so $B M$ is the angle bisector.
Also, $m \angle A M B=m \angle C M B$. On the other hand, $m \angle A M B+m \angle C M B=$ $m \angle A M C=180^{\circ}$. Thus, $m \angle A M B=m \angle C M B=180^{\circ} / 2=90^{\circ}$.

5. Triangle inequalities

In this section, we use previous results about triangles to prove two important inequalities which hold for any triangle.

We already know that if two sides of a triangle are equal, then the angles opposite to these sides are also equal (Theorem 9). The next theorem extends this result: in a triangle, if one angle is bigger than another, the side opposite the bigger angle must be longer than the one opposite the smaller angle.

Theorem 11. In $\triangle A B C$, if $m \angle A>m \angle C$, then we must have $B C>A B$.
Proof. Assume not. Then either $B C=A B$ or $B C<A B$.
But if $B C=A B$, then $\triangle A B C$ is isosceles, so by Theorem $9, m \angle A=$ $m \angle C$ as base angles, which gives a contradiction.

Now assume $B C<A B$, find the point M on $A B$ so that $B M=B C$, and draw the line $M C$. Then $\triangle M B C$ is isosceles, with apex at B. Hence $m \angle B M C=m \angle M C B$. On the other hand, by Problem 5, we have $m \angle B M C>m \angle A$, and by Axiom 3, we have $m \angle C=m \angle A C M+$ $m \angle M C B>m \angle M C B$, so

$$
m \angle C>m \angle M C B=m \angle B M C>m \angle A
$$

so we have reached a contradiction.
Thus, assumptions $B C=A B$ or $B C<A B$ both lead to a contradiction.
 Therefore, the only possibility is that $B C>A B$.

The converse of the previous theorem is also true: opposite a longer side, there must be a larger angle. The proof is left as an exercise.

Theorem 12. In $\triangle A B C$, if $B C>A B$, then we must have $m \angle A>m \angle C$.
The following theorem doesn't quite say that a straight line is the shortest distance between two points, but it says something along these lines. This result is used throughout much of mathematics, and is referred to as "the triangle inequality".

Theorem 13 (The triangle inequality). In $\triangle A B C$, we have $A B+B C>A C$.
Proof. Extend the line $A B$ past B to the point D so that $B D=B C$, and join the points C and D with a line so as to form the triangle $A D C$. Observe that $\triangle B C D$ is isosceles, with apex at B; hence $m \angle B D C=m \angle B C D$. It is immediate that $m \angle D C B<m \angle D C A$. Looking at $\triangle A D C$, it follows that $m \angle D<m \angle C$; by Theorem 11, this implies $A D>A C$. Our result now follows from $A D=A B+B D$ (Axiom 2)

6. Homework

1. Notice that SSA and AAA are not listed as congruence rules.
(a) Describe a pair of triangles that have two congruent sides and one congruent angle but are not congruent triangles.
(b) Describe a pair of triangles that have three congruent angles but are not congruent triangles.
(c) In the diagram below, let $m \angle A B C=45^{\circ}$. Prove that, in $\triangle A B C$ and $\triangle B C D$, we have $\angle A B C \cong$ $\angle B C D, \angle B C A \cong \angle C D B$, and $\angle C A B \cong \angle D B C$. Then notice that $\overline{B C}$ in $\triangle A B C$ is congruent to $\overline{B C}$ in $\triangle B C D$. Can we use the ASA congruence rule to deduce that $\triangle A B C \cong \triangle B C D$?

2. Consider lines l, m, and n are such that $m \| n$ and l intersects them both, as shown below. Prove that $m \angle 1+m \angle 2=180^{\circ}$.

3. Consider lines k, l, m, and n such that $m \| n$ and k, l, and n all intersect at P. Notice that $m \angle 4+m \angle x+m \angle 2=180^{\circ}$. Does this tell us anything about the sum $m \angle 1+m \angle x+m \angle 3 ?$

4. Prove theorem 8.
5. What is the sum of angles of a quadrialteral? a pentagon? an n-gon?
6. In a triangle $\triangle A B C$, let M be some point on the side $A B$ (see pictrue in section Triangle inequalitites). Prove that then $m \angle B M C>m \angle A$.
7. Given a triangle $\triangle A B C$, let D be a point on the line $A B$, so that A is between D and B. In this situation, angle $\angle D A C$ is called an external angle of $\triangle A B C$. Prove that $m \angle D A C=m \angle B+m \angle C$.

8. Prove second part of Theorem 10: if two base angles are equal, then the triangle is isosceles.
9. Prove that the following two properties of a triangle are equivalent:
(a) All sides have the same length
(b) All angles are 60°.

A triangle satisfying these properties is called equilateral.
10. The following method explains how one can find the midpoint of a segment $A B$ using a ruler and compass:

- Choose radius r (it should be large enough) and draw circles of radius r with centers at A and B.
- Denote the intersection points of these circles by P and Q. Draw a line $\overleftrightarrow{P Q}$.
- Let M be the intersection point of $\overleftrightarrow{P Q}$ and $\overleftrightarrow{A B}$. Then M is the midpoint of $A B$.

Can you justify this method, i.e., prove that so constructed point will indeed be the midpoint of $A B$? You can use the defining property of the circle: for a circle of radius r, the distance from any point on this circle to the center is exactly r. [Hint: find some isosceles triangles!]
11. Given $\triangle A B C$, let $\overline{C D}$ be the angle bisector of $\angle A C B$, with D on $\overline{A B}$. Suppose we wish to place a point E on $\overline{B C}$ such that $\triangle C E D$ is isosceles. Prove then that we must have $A C \| D E$.

