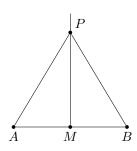
MATH 8: HANDOUT 15

1. Perpendicular Bisector

Consider any property of points on the plane — for example, the property that a point P is a distance exactly r from a given point O. The set of all points P for which this property holds true is called the locus of points satisfying this property. As we have seen above, the locus of points that are a distance r from a point O is called a circle (specifically, a circle of radius r centered at O).


Now consider we are given two points A, B. If a point P is an equal distance from A, B (i.e., if $\overline{PA} \cong \overline{PB}$) then we say P is equidistant from points A, B.

Theorem 14. The locus of points equidistant from a pair of points A, B is a line l which perpendicular to \overline{AB} and goes through the midpoint of AB. This line is called the perpendicular bisector of \overline{AB} .

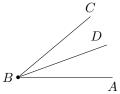
Proof. Let M be the midpoint of \overline{AB} , and let l be the line through M which is perpendicular to AB. We need to prove that for any point P,

$$(AP \cong BP) \iff P \in l$$

- 1. Assume that $AP \cong BP$. Then triangle APB is isosceles; by Theorem 10 from last week, it implies that $PM \perp AB$. Thus, PM must coincide with l, i.e. $P \in l$. Therefore, we have proved implication one way: if $AP \cong BP$, then $P \in l$.
- **2.** Conversley, assume $P \in l$. Then $m \angle AMP = m \angle BMP = 90^{\circ}$; thus, triangles $\triangle AMP$ and $\triangle BMP$ are congruent by SAS, and therefore $AP \cong BP$.

П

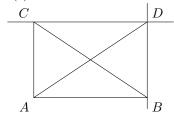
Theorem 15. In a triangle $\triangle ABC$, the perpendicular bisectors of the 3 sides intersect at a single point. This point is the center of a circle circumscribed about the triangle (i.e., such that all three vertices of the triangle are on the circle).

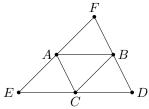

2. Median, Altitude, Angle Bisector

Last week we defined three special lines that can be constructed from any vertex in any triangle; each line goes from a vertex of the triangle to the line containing the triangle's opposite side (altitudes may sometimes land on the opposite side outside of the triangle). Given a triangle $\triangle ABC$,

- The altitude from A is the line through A perpendicular to BC;
- The median from A is the line from A to the midpoint D of \overline{BC} ;
- The angle bisector from A is the line \overrightarrow{AE} such that $\angle BAE \cong \angle CAE$. Here we let E denote the intersection of the angle bisector with \overline{BC} .

The following result is an analog of theorem 14. For a point P and a line l, we define the distance from P to l to be the length of the perpendicular dropped from P to l (see problem 1 in the HW). We say that point P is equidistant from two lines l, m if the distance from P to l is equal to the distance from P to m.


Theorem 16. For an angle ABC, the locus of points inside the angle which are equidistant from the two sides BA, BC is the ray \overrightarrow{BD} which is the angle bisector of $\angle ABC$.


Proof of this theorem was discussed in class.

3. Homework

- 1. Let P be a point not on line l, and $A \in l$ be the base of perpendicular from P to l: $AP \perp l$. Prove that for any other point B on l, PB > PA ("perpendicular is the shortest distance"). Note: you can not use Pythagorean theorem as we have not proved it yet; instead, try using Theorem 11 (opposite the larger angle there is a longer side).
- **2.** Let $\triangle ABC$ be a right triangle with right angle $\angle A$, and let D be the intersection of the line parallel to \overline{AB} through C with the line parallel to \overline{AC} through B.
 - (a) Prove $\triangle ABC \cong \triangle DCB$
 - (b) Prove $\triangle ABC \cong \triangle BDA$
 - (c) Prove that \overline{AD} is a median of $\triangle ABC$.

- **3.** Let $\triangle ABC$ be a right triangle with right angle $\angle A$, and let D be the midpoint of \overline{BC} . Prove that $AD = \frac{1}{2}BC$.
- **4.** Let l_1 , \bar{l}_2 be the perpendicular bisectors of side AB and BC respectively of $\triangle ABC$, and let F be the intersection point of l_1 and l_2 . Prove that then F also lies on the perpendicular bisector of the side BC. [Hint: use Theorem 14.]
- **5.** Prove Theorem 15.
- **6.** Let the angle bisectors from B and C in the triangle $\triangle ABC$ intersect each other at point F. Prove that \overrightarrow{AF} is the third angle bisector of $\triangle ABC$. [Hint: use Theorem 16]
- 7. Given triangle $\triangle ABC$, draw through each vertex a line parallel to the oppposite side. Denote the vertices of the resulting triangle by D, E, F, as shown in the figure below.

- (a) Prove that $\triangle ABC \cong \triangle BAF$ (pay attention to order of vertices). Similarly one proves that all four small triangles in the picture are congruent.
- (b) Prove that $\overline{AB} \parallel \overline{ED}$ and $AB = \frac{1}{2}ED$.
- (c) Prove that perpendicular bisectors of sides of $\triangle DEF$ are altitudes of $\triangle ABC$.
- (d) Show that in any triangle, the three altitudes meet at a single point.