MATH 8: HANDOUT 15

1. Perpendicular Bisector

Consider any property of points on the plane - for example, the property that a point P is a distance exactly r from a given point O. The set of all points P for which this property holds true is called the locus of points satisfying this property. As we have seen above, the locus of points that are a distance r from a point O is called a circle (specifically, a circle of radius r centered at O).
Now consider we are given two points A, B. If a point P is an equal distance from A, B (i.e., if $\overline{P A} \cong \overline{P B}$) then we say P is equidistant from points A, B.

Theorem 14. The locus of points equidistant from a pair of points A, B is a line l which perpendicular to $\overline{A B}$ and goes through the midpoint of $A B$. This line is called the perpendicular bisector of $\overline{A B}$.

Proof. Let M be the midpoint of $\overline{A B}$, and let l be the line through M which is perpendicular to $A B$. We need to prove that for any point P,

$$
(A P \cong B P) \Longleftrightarrow P \in l
$$

1. Assume that $A P \cong B P$. Then triangle $A P B$ is isosceles; by Theorem 10 from last week, it implies that $P M \perp A B$. Thus, $P M$ must coincide with l, i.e. $P \in l$. Therefore, we have proved implication one way: if $A P \cong B P$, then $P \in l$.
2. Conversley, assume $P \in l$. Then $m \angle A M P=m \angle B M P=90^{\circ}$; thus, triangles $\triangle A M P$ and $\triangle B M P$ are congruent by SAS, and therefore $A P \cong B P$.

Theorem 15. In a triangle $\triangle A B C$, the perpendicular bisectors of the 3 sides intersect at a single point. This point is the center of a circle circumscribed about the triangle (i.e., such that all three vertices of the triangle are on the circle).

2. Median, Altitude, Angle Bisector

Last week we defined three special lines that can be constructed from any vertex in any triangle; each line goes from a vertex of the triangle to the line containing the triangle's opposite side (altitudes may sometimes land on the opposite side outside of the triangle).
Given a triangle $\triangle A B C$,

- The altitude from A is the line through A perpendicular to $\overleftrightarrow{B C}$;
- The median from A is the line from A to the midpoint D of $\overline{B C}$;
- The angle bisector from A is the line $\overleftrightarrow{A E}$ such that $\angle B A E \cong \angle C A E$. Here we let E denote the intersection of the angle bisector with $\overline{B C}$.
The following result is an analog of theorem 14. For a point P and a line l, we define the distance from P to l to be the length of the perpendicular dropped from P to l (see problem 1 in the HW). We say that point P is equidistant from two lines l, m if the distance from P to l is equal to the distance from P to m.

Theorem 16. For an angle $A B C$, the locus of points inside the angle which are equidistant from the two sides $B A, B C$ is the ray $\overrightarrow{B D}$ which is the angle bisector of $\angle A B C$.

Proof of this theorem was discussed in class.

3. Homework

1. Let P be a point not on line l, and $A \in l$ be the base of perpendicular from P to $l: A P \perp l$. Prove that for any other point B on $l, P B>P A$ ("perpendicular is the shortest distance"). Note: you can not use Pythagorean theorem as we have not proved it yet; instead, try using Theorem 11 (opposite the larger angle there is a longer side).
2. Let $\triangle A B C$ be a right triangle with right angle $\angle A$, and let D be the intersection of the line parallel to $\overline{A B}$ through C with the line parallel to $\overline{A C}$ through B .
(a) Prove $\triangle A B C \cong \triangle D C B$
(b) Prove $\triangle A B C \cong \triangle B D A$
(c) Prove that $\overline{A D}$ is a median of $\triangle A B C$.

3. Let $\triangle A B C$ be a right triangle with right angle $\angle A$, and let D be the midpoint of $\overline{B C}$. Prove that $A D=\frac{1}{2} B C$.
4. Let l_{1}, l_{2} be the perpendicular bisectors of side $A B$ and $B C$ respectively of $\triangle A B C$, and let F be the intersection point of l_{1} and l_{2}. Prove that then F also lies on the perpendicular bisector of the side $B C$. [Hint: use Theorem 14.]
5. Prove Theorem 15.
6. Let the angle bisectors from B and C in the triangle $\triangle A B C$ intersect each other at point F. Prove that $\overleftrightarrow{A F}$ is the third angle bisector of $\triangle A B C$. [Hint: use Theorem 16]
7. Given triangle $\triangle A B C$, draw through each vertex a line parallel to the oppposite side. Denote the vertices of the resulting triangle by D, E, F, as shown in the figure below.

(a) Prove that $\triangle A B C \cong \triangle B A F$ (pay attention to order of vertices). Similarly one proves that all four small triangles in the picture are congruent.
(b) Prove that $\overline{A B} \| \overline{E D}$ and $A B=\frac{1}{2} E D$.
(c) Prove that perpendicular bisectors of sides of $\triangle D E F$ are altitudes of $\triangle A B C$.
(d) Show that in any triangle, the three altitudes meet at a single point.
