MATH 8
 HANDOUT 20: EUCLID'S ALGORITHM

Notation

\mathbb{Z} - all integers
\mathbb{N} - positive integers: $\mathbb{N}=\{1,2,3 \ldots\}$.
$d \mid a$ means that d is a divisor of a, i.e., $a=d k$ for some integer k.
$\operatorname{gcd}(a, b)$: greatest common divisor of a, b.

Euclid's ALGORITHM

In the last assignment, we proved the following:
Theorem. If $a=b q+r$, then the common divisors of pair (a, b) are the same as common divisors of pair (b, r). In particular,

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)
$$

This gives a very efficient way of computing the greatest common divisor of (a, b), called Euclid's algorithm:

1. If needed, switch the two numbers so that $a>b$
2. Compute the remainder r upon division of a by b. Replace pair (a, b) with the pair (b, r)
3. Repeat the previous step until you get a pair of the form $(d, 0)$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(d, 0)=d$.

For example:

$$
\begin{aligned}
\operatorname{gcd}(42,100) & =\operatorname{gcd}(42,16) \quad(\text { because } 100=2 \cdot 42+16) \\
& =\operatorname{gcd}(16,10)=\operatorname{gcd}(10,6)=\operatorname{gcd}(6,4) \\
& =\operatorname{gcd}(4,2)=\operatorname{gcd}(2,0)=2
\end{aligned}
$$

As a corollary of this algorithm, we also get the following two important results.
Theorem. Let $d=\operatorname{gcd}(a, b)$. Then m is a common divisor of a, b if and only if m is a divisor of d.
In other words, common divisors of a, b are the same as divisors of $d=\operatorname{gcd}(a, b)$, so knowing the gcd gives us all common divisors of a, b.

Theorem. Let $d=\operatorname{gcd}(a, b)$. Then it is possible to write d in the following form

$$
d=k a+l b
$$

for some $k, l \in \mathbb{Z}$.
(Expressions of this form are called linear combinations of a, b.)
Proof. Euclid's algorithm produces for us a sequence of pairs of numbers:

$$
(a, b) \rightarrow\left(a_{1}, b_{1}\right) \rightarrow\left(a_{2}, b_{2}\right) \rightarrow \ldots
$$

and the last pair in this sequence is $(d, 0)$, where $d=\operatorname{gcd}(a, b)$.
We claim that we can write $\left(a_{1}, b_{1}\right)$ as linear combination of a, b. Indeed, by definition

$$
\begin{aligned}
a_{1} & =b=0 \cdot a+1 \cdot b \\
b_{1} & =r=a-q b=1 \cdot a-q b
\end{aligned}
$$

where $a=q b+r$.
By the same reasoning, one can write a_{2}, b_{2} as linear combination of a_{1}, b_{1}. Combining these two statements, we get that one can write a_{2}, b_{2} as linear combinations of a, b. We can now continue in the same way until we reach $(d, 0)$.

Problems

When doing this homework, be careful that you only used the material we had proved or discussed so far - in particular, please do not use the prime factorization. And I ask that you only use integer numbers no fractions or real numbers.

1. Use Euclid's algorithm to compute $\operatorname{gcd}(54,36) ; \operatorname{gcd}(97,83) ; \operatorname{gcd}(1003,991)$
2. Use Euclid's algorithm to find all common divisors of 2634 and 522.
3. Prove that $\operatorname{gcd}(n, a(n+1))=\operatorname{gcd}(n, a)$
4. (a) Is it true that for all a, b we have $\operatorname{gcd}(2 a, b)=2 \operatorname{gcd}(a, b)$? If yes, prove; if not, give a counterexample.
(b) Is it true that for some a, b we have $\operatorname{gcd}(2 a, b)=2 \operatorname{gcd}(a, b)$? If yes, give an example; if not, prove why it is impossible.
5. Write each of the numbers appearing in the computation of $\operatorname{gcd}(100,42)$ above in the form $k \cdot 100+l \cdot 42$, for some integers k, l. For example,

$$
\begin{aligned}
& 16=1 \cdot 100-2 \cdot 42 \\
& 10=42-2 \cdot 16=42-2(100-2 \cdot 42)=\ldots
\end{aligned}
$$

6. (a) Compute gcd $(14,8)$ using Euclid's algorithm
(b) Write $\operatorname{gcd}(14,8)$ in the form $8 k+14 l$. (You can use guess and check, or proceed in the same way as in the previous problem)
(c) Does the equation $8 x+14 y=18$ have integer solutions? Can you find at least one solution?
(d) Does the equation $8 x+14 y=17$ have integer solutions? Can you find at least one solution?
(e) Can you give complete answer, for which integer values of c the equation $8 x+14 y=c$ has integer solutions?
7. If I only have 15 -cent coins and 12 -cent coins, can I pay $\$ 1.35$? $\$ 1.37$?
8. Let $a, b, c \in \mathbb{Z}$ be such that $a \mid b c$ and $\operatorname{gcd}(a, b)=1$. Prove that then one must have $a \mid c$. [Remember, you can not use prime factorization - we have not yet proved that it is unique!]

Hint: if $\operatorname{gcd}(a, b)=1$, then $x a+y b=1$ for some x, y, and therefore $c=(x a+y b) c$.
9. (a) Show that if a is odd, then $\operatorname{gcd}(a, 2 b)=\operatorname{gcd}(a, b)$.
*(b) Show that for $m, n \in \mathbb{N}, \operatorname{gcd}\left(2^{n}-1,2^{m}-1\right)=2^{\operatorname{gcd}(m, n)}-1$

