MATH 8: ASSIGNMENT 21

1. Prime Factorization

Here is a useful fact about prime numbers:
Theorem. If p is a prime number and a, b are integers such that $a b$ is divisible by p, then at least one of a or b is divisible by p.
Proof. To prove this, we will use the fact that the gcd of two numbers is always a factor of both numbers.
First, because p is prime, its only factors are p and 1 ; since $\operatorname{gcd}(p, a)$ is a factor of p, we get therefore that $\operatorname{gcd}(p, a)=p$ or $\operatorname{gcd}(p, a)=1$.

In the case where $\operatorname{gcd}(p, a)=p$, we get that p is a factor of a because $\operatorname{gcd}(p, a)$ is a factor of a. In the case where $\operatorname{gcd}(p, a)=1$, using Euclid's Algorithm we can write $1=x p+y a$ for some integers x, y, and thus $b=(x p+y a) b=x p b+y a b$. Then, by the definition of divisibility, $(a b$ is divisible by $p) \Longrightarrow(a b=k p)$ for some integer k, thus $x p b+y a b=x p b+y k p=p x b+p k y=p(x b+k y)$, therefore $b=p(x b+k y)$ and hence b is divisible by p, again by the definition of divisibility.

To continue on our journey through numbers, we explore the following idea: every number has a unique representation in terms of prime numbers - in a sense, one can understand the nature of a number by knowing which primes comprise it. This concept solidifies the relationship between primes and divisibility, via the following theorem:

Theorem (Fundamental Theorem of Arithmetic). For any integer n such that $n>1, n$ can be written in a unique way as the product of prime numbers: namely, there are some prime numbers $p_{1}, p_{2}, \ldots, p_{k}$ (allowing repetition) such that $n=p_{1} p_{2} \ldots p_{k}$; moreover, if there are prime numbers $q_{1}, q_{2}, \ldots, q_{k}$ such that $n=q_{1} q_{2} \ldots q_{k}$, then the q_{i} can be rearranged so as to coincide exactly with the p_{i} (i.e., they are the same set of prime numbers).

Proof. First we must prove that all numbers have a prime factorization (at least one). We can do this by contradiction: assume that there are numbers that do not have a prime factorization. Then there is a smallest one; call it n. Because n does not have a prime factorization, it cannot itself be prime, therefore $n=a b$ for positive integers $a<n, b<n$. Use the fact that $a<n$ to deduce that a does have a prime factorization - and similarly for b - then we can write n as the product of the prime factorizations of a and b, which is a contradiction.

To prove uniqueness of prime factorizations, suppose $n=p_{1} p_{2} \ldots p_{k}=q_{1} q_{2} \ldots q_{k}$. We will assume first that there are no common factors, i.e. $p_{i} \neq q_{j}$ for all i, j. Then $p_{1} p_{2} \ldots p_{k}=q_{1} q_{2} \ldots q_{k} \Longrightarrow\left(q_{1} q_{2} \ldots q_{k}\right.$ is divisible by p_{1}).

Using our first theorem, we can deduce from this that one of the integers from q_{1} through q_{k} is divisible by p_{1} (the details are left as an exercise). Let q_{i} be divisible by p_{1}; then q_{i} is prime, so its only factors are 1 and q_{i}, but p_{1} can equal neither 1 nor q_{i} because p_{1} is a prime number (hence greater than 1) that is distinct from all the q_{1} through q_{k}. This is a contradiction, therefore there must be some common factors in the equality $p_{1} p_{2} \ldots p_{k}=q_{1} q_{2} \ldots q_{k}$.

We can then cancel out the common factors, repeat the preceding argument, and eventually deduce that $1=1$, i.e. that the p_{1} through p_{k} and the q_{1} through q_{k} are actually the same set of prime numbers.

2. Homework

1. Determine the prime factorization of:
(a) 10
(b) 20
(c) 35
(d) 60
(e) $64 \cdot 81$
(f) 10^{k} for $k \in \mathbb{Z}$
2. Determine how many factors each of the following numbers have:
(a) 10
(b) 60
(c) 97
(d) 99
(e) 10^{5}
(f) $34 \cdot 35$
3. Use Euclid's Algorithm to solve the following:
(a) Determine the gcd of 10 and 101
(b) Determine the gcd of 99 and 1001
(c) Determine the gcd of 22 and 16
(d) Write $\operatorname{gcd}(22,16)$ in the form $22 k+16 l$
(e) Are there any integer solutions to the equation $14 k+42 l=1$? How about $14 k+42 l=2$?
(f) Determine the smallest number n such that $32 k+36 l=n$ has integer solutions for k and l.
4. Prove that if $a_{1}, a_{2}, \ldots, a_{k}$ are integers such that the product $a_{1} a_{2} \ldots a_{k}$ is divisible by a prime number p, then one of the numbers a_{1} through a_{k} is divisible by p.
5. (a) Prove that, given any nonzero integer a, every prime number that appears in the prime factorization of a^{2} must appear an even number of times.
(b) Deduce that there are no nonzero integers a, b such that $a^{2}=2 b^{2}$. [Hint: how many times does 2 appear in the prime factorization of $2 b^{2}$?]
(c) We say a number x is rational if it can be written as a fraction of integers, i.e. $x=\frac{a}{b}$ for some integers a, b (where b is nonzero). Prove that $\sqrt{2}$ is irrational (not rational). [Hint: try a proof by contradiction.]
6. Find the $\operatorname{gcd}\left(2^{3} \cdot 3^{4} \cdot 5,2^{2} \cdot 5^{2} \cdot 7\right)$ using prime factorization.
7. Write all divisors of $2^{2} \cdot 3^{4}$
8. Let $m=p_{1}^{a_{1}} \cdot \ldots \cdot p_{k}^{a_{k}}$ be the prime factorization of m. How many divisors does m have? Express your answer in terms of a_{i}.
9. Prove that there are no integer solutions to the pair of equations $a+b=7, a^{2}+b^{2}=19$. [Hint: try squaring one of the equations.]
10. Assuming size/memory is not an issue, can you find a way to encode a sequence of positive integers $r_{1}, r_{2}, \ldots, r_{k}$ as a single integer n, such that it is possible to recover the numbers r_{i} in order from n ?
