MATH 8

HANDOUT 23: LINEAR CONGRUENCES

Linear Congruences

Solving the congruence $a x \equiv b \bmod m$ is equivalent to solving $a x-m y=b$. We already know we can use Euclid's algorithm to solve this type of equations.
Let $d=\operatorname{gcd}(a, m)$. If $d \Lambda b$ then the linear congruence $a x \equiv b \bmod m$ has no solutions. If $d \mid b$ then the linear congruence $a x \equiv b \bmod m$ has exactly d solutions (by solution we mean different congruence classes modulo m). The solutions are of the form $x=x_{0}+\left(\frac{m}{d}\right) t$, where t takes integer values, $0,1, \ldots, \mathrm{~d}-1$.

Inverse modulo m

An inverse of $a \bmod m$ is any integer such that $a \cdot c \equiv 1 \bmod m$. We can also write it as $a^{-1} \bmod m=c$. An inverse of $a \bmod m$ exists if and only if $\operatorname{gcd}(\mathrm{a}, \mathrm{m})=1$.

Problems

1. For the following equations, find at least one solution (if exists; if not, explain why)

$$
\begin{array}{ll}
5 x \equiv 1 & \bmod 19 \\
9 x \equiv 1 & \bmod 24 \\
9 x \equiv 6 & \bmod 24
\end{array}
$$

2. Show that the equation $a x \equiv 1 \bmod m$ has a solution if and only if $\operatorname{gcd}(a, m)=1$. Such an x is called the inverse of a modulo m. [Hint: Euclid's algorithm!]
3. Find the following inverses
inverse of $2 \bmod 5$
inverse of $5 \bmod 7$
inverse of $7 \bmod 11$
inverse of $11 \bmod 41$
4. Show that if $a \equiv 1 \bmod n$ and $a \equiv 1 \bmod m$ and $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$ then $a \equiv 1 \bmod m n$.
5. Given integers m, n,
(a) Prove that $(m+1)^{n} \equiv 1 \bmod m$
(b) Given some integer k, determine the value of $(m+1)^{0}+(m+1)^{1}+(m+1)^{2}+\ldots+(m+1)^{k}$ $\bmod m$
(c) Determine the value of $1111 \bmod 9$
(d) Given some integer a written in base 10, determine a method for finding the value of $a \bmod 9$.
6. Given a prime p, let $a_{1}, a_{2}, \ldots, a_{k}$ be a set of positive integers each less than p. Prove that the product $a_{1} a_{2} \ldots a_{k}$ cannot be divisible by p.
7. For a positive number n, let $\tau(n)$ (this is Greek letter "tau") be the number of all divisors of n (including 1 and n itself).

Compute
$\tau(10)$
$\tau(77)$
$\tau\left(p^{a}\right)$, where p is prime (the answer, of course, depends on a)
$\tau\left(p^{a} q^{b}\right)$, where p, q are different primes
$\tau(10000)$
$\tau\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}\right)$, where p_{i} are distinct primes.

