
MATH 8: HANDOUT 18
EUCLIDEAN GEOMETRY – 5: MIDLINE. CIRCLES. INSCRIBED ANGLES.

10. MIDLINE OF A TRIANGLE AND TRAPEZOID

Definition. A midline of a triangle △ABC is the segment connecting mid-
points of two sides.

Theorem 17. If DE is the midline of △ABC, then DE = 1
2AC, and DE ‖

AC.
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Proof. Continue line DE and mark on it point F such that DE = EF .
1. △DEB ∼= △FEC by SAS: DE = EF , BE = EC, ∠BED ∼=

∠CEF .
2. ADFC is a parallelogram: First, we can see that since △DEB ∼=

△FEC, then ∠BDE ∼= ∠CFE, and since they are alternate interior
angles, AD ‖ FC. Also, from the same congruency, FC = BD, but
BD = AD since D is a midpoint. Then, FC = DA. So we have
FC = DA and FC ‖ DA, and therefore ADFC is a parallelogram.

3. That gives us the second part of the theorem: DE ‖ AC. Also, since
ADFC is a parallelogram, AC = DF = 2 ·DE, and from here we
get DE = 1

2AC.
□
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Theorem 18 (Trapezoid midline). Let ABCD be a trape-
zoid, with bases AD and BC, and let E, F be midpoints
of sides AB, CD respectively. Then EF ‖ AB, and EF =
(AD +BC)/2.
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Idea of the proof: draw through point F a line parallel to
AB, as shown in the figure. Prove that this gives a paral-
lelogram, in which points E, F are midpoints of opposite
sides.
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11. CONSTRUCTIONS WITH STRAIGHTEDGE AND COMPASS

Large part of classical geometry are geometric constructions: can we construct a figure with given prop-
erties? Traditionally, such constructions are done using straight-edge and compass: the straight-edge tool
constructs lines and the compass tool constructs circles. More precisely, it means that we allow the following
basic operations:

• Draw (construct) a line through two given or previously constructed distinct points. (Recall that by
axiom 1, such a line is unique).

• Draw (construct) a circle with center at previously constructed point O and with radius equal to
distance between two previously constructed points B, C

• Construct the intersections point(s) of two previously constructed lines, circles, or a circle and a line

All other constructions (e.g., draw a line parallel to a given one) must be done using these elementary
constructions only!

Constructions of this form have been famous since mathematics in ancient Greece. Here are some exam-
ples of constructions:



Example 1. Given any line segment AB and ray
−→
CD, one can construct a point E on

−→
CD such that

CE ∼= AB.

Construction. Construct a circle centered at C

with radius AB. Then this circle will intersect
−→
CD

at the desired point E. □
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Example 2. Given angle ∠AOB and ray
−→
CD, one

can construct an angle around
−→
CD that is congru-

ent to ∠AOB.

Construction. First construct point X on
−→
CD such

that CX ∼= OA. Then, construct a circle of ra-
dius OB centered at C and a circle of radius AB
centered at X. Let Y be the intersection of these
circles; then △XCY ∼= △AOB by SSS and hence
∠XCY ∼= ∠AOB. □
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A great tool to learn these constructions is an app called Euclidea. You can use it in a web browser at
http://euclidea.xyz, or install it on your phone or tablet (it is available both for iOS and Android).

Note: Euclidea starts with a slightly more restrictive set of tools. Namely, it only allows drawing circles
with a given center and passing through a given point; thus, you can not use another segment as radius.

12. CIRCLES

Definition. A circle with center O and radius r > 0 is the set of all points P in the plane such that OP = r.

Traditionally, one denotes circles by Greek letters: λ,ω . . . .
Given a circle λ with center O,
• A radius is any line segment from O to a point A on λ,
• A chord is any line segment between distinct points A, B on λ,
• A diameter is a chord that passes through O,

Recall that by Theorem 16, if O is equidistant from points A,B, then O must lie on the perpendicualr
bisector of AB. We can restate this result as follows.

Theorem 19. If AB is a chord of circle λ, then the center O of this circle lies on the perpendicular bisector of
AB.

13. RELATIVE POSITIONS OF LINES AND CIRCLES

Theorem 20. Let λ be a circle of radius r with center at O and let l be a line. Let d be the distance from O to l,
i.e. the length of the perpendicular OP from O to l. Then:

• If d > r, then λ and l do not intersect.
• If d = r, then λ intersects l at exactly one point P , the base of the perpendicular from O to l. In this case,

we say that l is tangent to λ at P .
• If d < r, then λ intersects l at two distinct points.

Proof. First two parts easily follow from Theorem 14: slant line is longer than the perpendicular.
For the last part, it is easy to show that λ can not intersect l at more than 2 points (see problem 1 of

previous homework). Proving that it does intersect l at two points is very hard and requires deep results
about real numbers. This proof will not be given here. □

Note that it follows from the definition that a tangent line is perpendicular to the radius OP at point of
tangency. Converse is also true.

http://euclidea.xyz


Theorem 21. Let λ be a circle with center O, and let l be a line through a point A on λ. Then l is tangent to λ

if and only if l ⊥
←→
OA

Proof. By definition, if l is the tangent line to λ, then it has only one common point with λ, and this point is
the base of the perpendicular from O to l; thus, OA is the perpendicular to l.

Conversely, if OA ⊥ l, it means that the distance from l to O is equal to the radius (both are given by
OA), so l is tangent to λ. □

Similar results hold for relative position of a pair of circles. We will only give part of the statement.

Theorem 22. Let λ1,λ2 be two circles, with centers O1, O2 and radiuses r1, r2 respectively; assume that r1 ≥ r2.
Let d = O1O2 be the distance between the centers of the two circles.

• If d > r1 + r2 or d < r1 − r2, then these two circles do not intersect.

• If d = r1 + r2 or d = r1 − r2 then these two circles have a unique common point, which lies on the line
O1O2

• If r1 − r2 < d < r1 + r2, then the two circles intersect at exactly two points.

We skip the proof.

Definition. Two circles are called tangent if they intersect at exactly one point.

14. ARCS AND ANGLES

Consider a circle λ with center O, and an angle formed by two rays from O. Then these two rays intersect
the circle at points A, B, and the portion of the circle contained inside this angle is called the arc subtended

by ∠AOB. We will sometimes use the notation
>
AB. We define the measure of the arc as the measure of the

corresponding central angle:
>
AB = m∠AOB.

Theorem 23. Let A, B, C be on circle λ with center O. Then m∠ACB = 1
2

>
AB. The angle ∠ACB is said to be

inscribed in λ.
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Proof. There are actually a few cases to consider here, since C may be
positioned such that O is inside, outside, or on the angle ∠ACB. We will
prove the first case here, which is pictured on the left.
Case 1. Draw diameter CD. Let x = m∠ACD, y = m∠BCD, so that
m∠ACB = x+ y.
Since OC is a radius of λ, we have that △AOC is isosceles triangle, thus
m∠A = x. Therefore, m∠AOD = 2x, as it is the external angle of △AOC.
Similarly, m∠BOD = 2y. Thus,

>
AB =

>
AD +

>
DB = 2x+ 2y. □

This theorem has a converse, which essentially says that all points C forming a given angle ∠ACB with
gven points A,B must lie on a circle containing points A,B. Exact statement is given in the homework (see
problem ??).

As an immediate corollary, we get the following result:



Theorem 24. Let λ be a circle with diameter AB. Then for any point C on this circle other than A,B, the angle
∠ACB is the right angle. Conversely, if a point C is such that ∠ACB is the right angle, then C must lie on the
circle λ.

HOMEWORK

1. Show that if we mark midpoints of each of the three sides of a triangle, and connect these points, the
resulting segments will divide the original triangle into four triangles, all congruent to each other.

2. (Altitudes intersect at single point)
The goal of this problem is to prove that three altitudes of a triangle intersect at a single point.
Given a triangle △ABC, draw through each vertex a line parallel to the
opposite side. Denote the intersection points of these lines by A′, B′, C ′ as
shown in the figure.

(a) Prove that A′B = AC (hint: use parallelograms!)
(b) Show that B is the midpoint of A′C ′, and similarly for other two

vertices.
(c) Show that altitudes of △ABC are exactly the perpendicular bisec-

tors of sides of △A′B′C ′.
(d) Prove that the three altitudes of △ABC intersect at a single point.
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3. Without using Theorem 20, prove that a circle can not have more than two intersections with a line.
[Hint: assume it has three intersection points, and use Theorem 19 to get a contradiction.]

4. Prove that given three points A,B,C not on the same line, there is a unique circle passing through
these points. This circle is called the circumscribed circle of △ABC. Explain how to construct this
circle using ruler and compass.

5. Show that if a circle ω is tangent to both sides of the angle ∠ABC, then the center of that circle must
lie on the angle bisector. [Hint: this center is equidistant from the two sides of the circle.] Show that
conversely, given a point O on the angle bisector, there exists a circle with center at this point which
is tangent to both sides fo the angle.

6. Use the previous problem to show that for any triangle, there is a unique circle that is tangent to all
three sides (inscribed circle).

7. Given a circle λ with center A and a point B outside this circle, construct the tangent line l from B
to λ using straightedge and compass. How many solutions does this problem have?

[Hint: let P be the tangency point (which we haven’t contructed yet). Then by Theorem 21,
∠APB is a right angle. Thus, by Theorem 24, it must lie on a circle with diameter OP ]

8. Complete levels α, β in Euclidea.


