MATH 8: HANDOUT 19

EUCLIDEAN GEOMETRY 6: SIMILAR TRIANGLES.

15. Thales Theorem

Theorem 25 (Thales Theorem). Let points A^{\prime}, B^{\prime} be on the sides of angle $\angle A O B$ as shown in the picture. Then lines $A B$ and $A^{\prime} B^{\prime}$ are parallel if and only if

$$
\frac{O A}{O B}=\frac{O A^{\prime}}{O B^{\prime}}
$$

In this case, we also have $\frac{O A}{O B}=\frac{A A^{\prime}}{B B^{\prime}}$

We have already seen and proved a special case of this theorem when discussing the midline of a triangle.
The proof of this theorem is unexpectedly hard. In the case when $\frac{O A}{O A^{\prime}}$ is a rational number, one can use arguments similar to those we did when talking about midline. The case of irrational numbers is harder yet. We skip the proof for now; it will be discussed in Math 9.

As an immediate corollary of this theorem, we get the following result.

Theorem 26. Let points A_{1}, \ldots, A_{n} and $B_{1}, \ldots B_{n}$ on the sides of an angle be chosen so that $A_{1} A_{2}=A_{2} A_{3}=\cdots=A_{n-1} A_{n}$, and lines $A_{1} B_{1}, A_{2} B_{2}$, \ldots are parallel. Then $B_{1} B_{2}=B_{2} B_{3}=\cdots=B_{n-1} B_{n}$.

Proof of this theorem is left to you as exercise.

16. Similar triangles

Definition. Two triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$ are called similar if

$$
\angle A \cong \angle A^{\prime}, \quad \angle B \cong \angle B^{\prime}, \quad \angle C \cong \angle C^{\prime}
$$

and the corresponding sides are proportional, i.e.

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}
$$

The common ratio $\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}$ is sometimes called the similarity coefficient.
There are some similarity tests:
Theorem 27 (AAA similarity test). If the corresponding angles of triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$ are equal:

$$
\angle A \cong \angle A^{\prime}, \quad \angle B \cong \angle B^{\prime}, \quad \angle C \cong \angle C^{\prime}
$$

then the triangles are similar.
Theorem 28 (SSS similarity test). If the corresponding sides of triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$ are proportional:

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}
$$

then the triangles are similar.
Theorem 29 (SAS similarity test). If two pairs of corresponding sides of triangles $\triangle A B C, \triangle A^{\prime} B^{\prime} C^{\prime}$ are proportional:

$$
\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}
$$

and $\angle A \cong \angle A^{\prime}$ then the triangles are similar.
Proofs of all of these tests can be obtained from Thales theorem.

Homework

1. (Angle Theorems) Let's study Inscribed Angle Theorem (Theorem 23 from Handout 16) in a bit more detail!
(a) Prove the converse of this theorem: namely, if λ is a circle centered at O and A, B, are on λ, and there is a point C such that $m \angle A C B=\frac{1}{2} m \angle A O B$, then C lies on λ. [Hint: let C^{\prime} be the point where line $A C$ intersects λ. Show that then, $m \angle A C B=$ $m \angle A C^{\prime} B$, and show that this implies $C=C^{\prime}$.]
(b) Let A, B be on circle λ centered at O and m the tangent to λ at A, as shown on the right. Let C be on m such that C is on the same side of $\overleftrightarrow{O A}$ as B. Prove that $m \angle B A C=\frac{1}{2} m \angle B O A$. [Hint: extend $\overline{O A}$ to intersect λ at point D so that $\overline{A D}$ is a diameter of λ. What arc does $\angle D A B$ subtend?]

2. Here is a modification of Inscribed Angle Theorem.

Consider a circle λ and an angle whose vertex C is outside this circle and both sides intersect this circle at two points as shown in the figure. In this case, intersection of the angle with the circle defines two arcs: $\overparen{A B}$ and $\widehat{A^{\prime} B^{\prime}}$.
Prove that in this case, $m \angle C=\frac{1}{2}\left(\overparen{A B}-\widehat{A^{\prime} B^{\prime}}\right)$.
[Hint: draw line $A B^{\prime}$ and find first the angle $\angle A B^{\prime} B$. Then notice that this angle is an exterior angle of $\triangle A C B^{\prime}$.]

3. Can you suggest and prove an analog of the previous problem, but when the point C is inside the circle (you will need to replace an angle by two intersecting lines, forming a pair of vertical angles)?
4. Prove Theorem 26 (using Thales Theorem). Hint: let $k=\frac{O B_{1}}{O A_{1}}$; show that then $B_{i} B_{i+1}=k A_{i} A_{i+1}$.
5. Using Theorem 26, describe how one can divide a given segment into 5 equal parts using ruler and compass.
6. Given segments of length a, b, c, construct a segment of length $\frac{a b}{c}$ using ruler and compass.
7. Let $A B C$ be a right triangle, $\angle C=90^{\circ}$, and let $C D$ be the altitude. Prove that triangles $\triangle A C D, \triangle C B D$ are similar. Deduce from this that $C D^{2}=A D \cdot D B$.

8. Let M be a point inside a circle and let $A A^{\prime}, B B^{\prime}$ be two chords through M. Show that then $A M \cdot M A^{\prime}=B M \cdot M B^{\prime}$. [Hint: use inscribed angle theorem to show that triangles $\triangle A M B, \triangle B^{\prime} M A^{\prime}$ are similar.]
9. Let $A A^{\prime}, B B^{\prime}$ be altitudes in the acute triangle $\triangle A B C$.
(a) Show that points A^{\prime}, B^{\prime} are on a circle with diameter $A B$.
(b) Show that $\angle A A^{\prime} B^{\prime}=\angle A B B^{\prime}, \angle A^{\prime} B^{\prime} B=\angle A^{\prime} A B$
(c) Show that triangle $\triangle A B C$ is similar to triangle $\triangle A^{\prime} B^{\prime} C$.

