MATH 8: HANDOUT 23
 NUMBER THEORY 4: CONGRUENCES

Reminder: Euclid's algorithm

Recall that as a corollary of Euclid's algorithm we have the following result:
Theorem. An integer m can be written in the form

$$
m=a x+b y
$$

if and only if m is a multiple of $\operatorname{gcd}(a, b)$.
For example, if $a=18$ and $b=33$, then the numbers that can be written in the form $18 x+33 y$ are exactly the multiples of 3 .

To find the values of x, y, one can use Euclid's algorithm; for small a, b, one can just use guess-and-check.

Congruences

In many situation, we are mostly interested in remainder upon division of different numbers by same integer n. For example, in questions related to the last digit of a number k, we are really looking at remainder upon division of k by 10 .

This motivates the following definition: we will write

$$
a \equiv b \quad \bmod m
$$

(reads: a is congruent to b modulo m) if a, b have the same remainder upon division by m (or, equivalently, if $a-b$ is a multiple of m).

Congruences can be added and multiplied in the same way as equalities: if

$$
\begin{aligned}
a & \equiv a^{\prime} & \bmod m \\
b & \equiv b^{\prime} & \bmod m
\end{aligned}
$$

then

$$
\begin{aligned}
a+b & \equiv a^{\prime}+b^{\prime} \quad \bmod m \\
a b & \equiv a^{\prime} b^{\prime} \quad \bmod m
\end{aligned}
$$

Here are some examples:

$$
\begin{array}{ll}
2 \equiv 9 \equiv 23 \equiv-5 \equiv-12 & \bmod 7 \\
10 \equiv 100 \equiv 28 \equiv-8 \equiv 1 & \bmod 9
\end{array}
$$

Note: we will occasionally write $a \bmod m$ for remainder of a upon division by m.
Since $23 \equiv 2 \bmod 7$, we have

$$
23^{3} \equiv 2^{3} \equiv 8 \equiv 1 \quad \bmod 7
$$

And because $10 \equiv 1 \bmod 9$, we have

$$
10^{4} \equiv 1^{4} \equiv 1 \quad \bmod 9
$$

One important difference is that in general, one can not divide both sides of an equivalence by a number: for example, $5 a \equiv 0 \bmod m$ does not necessarily mean that $a \equiv 0 \bmod m$ (see problem 3b below).

1. (a) Use $10 \equiv-1 \bmod 11$ to compute $100 \bmod 11 ; 100,000,000 \bmod 11$. Can you derive the general formula for $10^{n} \bmod 11$?
(b) Without doing long division, compute $1375400 \bmod 11$. [Hint: $1375400=10^{6}+3 \cdot 10^{5}+7 \cdot 10^{4} \ldots$]
2. (a) Compute remainders modulo 12 of $5,5^{2}, 5^{3}, \ldots$ Find the pattern and use it to compute 5^{1000} $\bmod 12$
(b) Prove that for any a, m, the following sequence of remainders mod m :
$a \bmod m, a^{2} \bmod m, \ldots \ldots$
sooner or later starts repeating periodically (we will find the period later). [Hint: have you heard of pigeonhole principle?]
(c) Find the last digit of 7^{2021}
3. (a) For of the following equations, find at least one integer solution (if exists; if not, explain why)

$$
\begin{array}{ll}
5 x \equiv 1 & \bmod 19 \\
9 x \equiv 1 & \bmod 24 \\
9 x \equiv 6 & \bmod 24
\end{array}
$$

[Hint: $5 x \equiv 1 \bmod 19$ is the same as $5 x=1+19 y$ for some integer y.]
(b) Give an example of a, m such that $5 a \equiv 0 \bmod m$ but $a \not \equiv 0 \bmod m$
4. (a) Show that the equation $a x \equiv 1 \bmod m$ has a solution if and only if $\operatorname{gcd}(a, m)=1$. Such an x is called the inverse of a modulo m. [Hint: Euclid's algorithm!]
(b) Find the following inverses
inverse of $2 \bmod 5$
inverse of $5 \bmod 7$
inverse of $7 \bmod 11$
Inverse of $11 \bmod 41$
5. (a) Find $\operatorname{gcd}(48,39)$
(b) Solve $48 x+39 y=3$
(c) Find inverse of $39 \bmod 48$.
6. (a) Integers a, b are such that $a^{2}+b^{2}$ is divisible by 3 . Show that then $a^{2}+b^{2}$ is divisible by 9 .
(b) Integers a, b are such that $a^{2}+b^{2}$ is divisible by 21 . Show that then $a^{2}+b^{2}$ is divisible by 441 .
*7. Prove that no positive integer solutions exist for the following equations.
(a) $x^{3}=x+10^{n}$ [Hint: see if you can prove that $\left.x^{3} \equiv x \bmod 3\right]$
(b) $x^{3}+y^{3}=x+y+10^{n}$
8. For a positive number n, let $\sigma(n)$ (this is Greek letter "sigma") be the sum of all divisors of n (including 1 and n itself).

Compute
$\sigma(10)$
$\sigma(77)$
$\sigma\left(p^{a}\right)$, where p is prime (the answer, of course, depends on p, a)
$\sigma\left(p^{a} q^{b}\right)$, where p, q are different primes
$\sigma(10000)$
$\sigma\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}\right)$, where p_{i} are distinct primes.

