MATH 8: HANDOUT 23 NUMBER THEORY 4: CONGRUENCES

REMINDER: EUCLID'S ALGORITHM

Recall that as a corollary of Euclid's algorithm we have the following result:

Theorem. An integer m can be written in the form

m = ax + by

if and only if m is a multiple of gcd(a, b).

For example, if a = 18 and b = 33, then the numbers that can be written in the form 18x + 33y are exactly the multiples of 3.

To find the values of x, y, one can use Euclid's algorithm; for small a, b, one can just use guess-and-check.

CONGRUENCES

In many situation, we are mostly interested in remainder upon division of different numbers by same integer n. For example, in questions related to the last digit of a number k, we are really looking at remainder upon division of k by 10.

This motivates the following definition: we will write

$$a \equiv b \mod m$$

(reads: *a* is *congruent* to *b* modulo *m*) if *a*, *b* have the same remainder upon division by *m* (or, equivalently, if a - b is a multiple of *m*).

Congruences can be added and multiplied in the same way as equalities: if

$$a \equiv a' \mod m$$
$$b \equiv b' \mod m$$

then

$$a+b \equiv a'+b' \mod m$$

 $ab \equiv a'b' \mod m$

Here are some examples:

 $2 \equiv 9 \equiv 23 \equiv -5 \equiv -12 \mod 7$

$$10 \equiv 100 \equiv 28 \equiv -8 \equiv 1 \mod 9$$

Note: we will occasionally write $a \mod m$ for remainder of a upon division by m. Since $23 \equiv 2 \mod 7$, we have

$$23^3 \equiv 2^3 \equiv 8 \equiv 1 \mod 7$$

And because $10 \equiv 1 \mod 9$, we have

$$10^4 \equiv 1^4 \equiv 1 \mod 9$$

One important difference is that in general, one can not divide both sides of an equivalence by a number: for example, $5a \equiv 0 \mod m$ does not necessarily mean that $a \equiv 0 \mod m$ (see problem 3b below).

PROBLEMS

- 1. (a) Use $10 \equiv -1 \mod 11$ to compute 100 mod 11; 100,000,000 mod 11. Can you derive the general formula for $10^n \mod 11$?
 - (b) Without doing long division, compute $1375400 \mod 11$. [Hint: $1375400 = 10^6 + 3 \cdot 10^5 + 7 \cdot 10^4 \dots$]
- (a) Compute remainders modulo 12 of 5, 5², 5³, Find the pattern and use it to compute 5¹⁰⁰⁰ mod 12
 - (b) Prove that for any a, m, the following sequence of remainders mod m:
 a mod m, a² mod m,
 sooner or later starts repeating periodically (we will find the period later). [Hint: have you heard of pigeonhole principle?]
 - (c) Find the last digit of 7^{2021}
- 3. (a) For of the following equations, find at least one integer solution (if exists; if not, explain why)

 $5x \equiv 1 \mod 19$ $9x \equiv 1 \mod 24$ $9x \equiv 6 \mod 24$

[Hint: $5x \equiv 1 \mod 19$ is the same as 5x = 1 + 19y for some integer y.]

- (b) Give an example of a, m such that $5a \equiv 0 \mod m$ but $a \not\equiv 0 \mod m$
- 4. (a) Show that the equation $ax \equiv 1 \mod m$ has a solution if and only if gcd(a, m) = 1. Such an x is called the *inverse* of a modulo m. [Hint: Euclid's algorithm!]
 - (b) Find the following inverses inverse of 2 mod 5 inverse of 5 mod 7 inverse of 7 mod 11 Inverse of 11 mod 41
- 5. (a) Find gcd(48, 39)
 - (b) Solve 48x + 39y = 3
 - (c) Find inverse of 39 mod 48.
- 6. (a) Integers a, b are such that a² + b² is divisible by 3. Show that then a² + b² is divisible by 9.
 (b) Integers a, b are such that a² + b² is divisible by 21. Show that then a² + b² is divisible by 441.
- *7. Prove that no positive integer solutions exist for the following equations.
 - (a) $x^3 = x + 10^n$ [Hint: see if you can prove that $x^3 \equiv x \mod 3$]

(b) $x^3 + y^3 = x + y + 10^n$

8. For a positive number n, let $\sigma(n)$ (this is Greek letter "sigma") be the sum of all divisors of n (including 1 and n itself).

Compute

- $\sigma(10)$
- $\sigma(77)$

 $\sigma(p^a)$, where p is prime (the answer, of course, depends on p, a)

- $\sigma(p^a q^b)$, where p, q are different primes
- $\sigma(10000)$

 $\sigma(p_1^{a_1}p_2^{a_2}\dots p_k^{a_k})$, where p_i are distinct primes.