MATH 8: HANDOUT 24 NUMBER THEORY 5: CONGRUENCES CONTINUED

REMINDER: EUCLID'S ALGORITHM

Recall that as a corollary of Euclid's algorithm we have the following result:
Theorem. An integer m can be written in the form

$$
m=a x+b y
$$

if and only if m is the multiple of $\operatorname{gcd}(a, b)$.
Moreover, Euclid's algorithm gives us an explicit way to find x, y. Thus, it also gives us a way of solving congruences

$$
a x \equiv m \quad \bmod b
$$

As a corollary we get this:
Theorem. Equation

$$
a x \equiv 1 \quad \bmod b
$$

has a solution if and only if a, b are relatively prime, i.e. if $\operatorname{gcd}(a, b)=1$.
Such an x is called inverse of a modulo b.
As another corollary, we see that in some situations we can divide both sides of a congruence by a number.
Theorem. Assume that a, b are relatively prime. Then

$$
a n \equiv 0 \quad \bmod b
$$

if and only if $n \equiv 0 \bmod b$.
Indeed, let h be inverse of $a \bmod b$. Then multiplying both sides of congruence by h, we get $h a n \equiv 0$ $\bmod b$. SInce $h a \equiv 1 \bmod b$, we get $n \equiv 0$.

Homework

When doing this homework, be careful that you only used the material we had proved or discussed so far - in particular, please do not use the prime factorization. And I ask that you only use integer numbers no fractions or real numbers.

1. Prove that $30^{2021}+61^{2020}$ is divisible by 31 .
2. Find the last two digits of $(2016)^{2021}$.
3. Prove that for any integer $n, n^{9}-n$ is a multiple of 5 . [Hint: can you prove it if you know $n \equiv 1$ $\bmod 5$? or if $n \equiv 2 \bmod 5$? or \ldots]
4. (a) Find the inverses of the following numbers modulo 14 (if they exist): $3 ; 9 ; 19 ; 21$
(b) Of all the numbers $1-14$, how many are invertible modulo 14 ?
5. (a) Find inverse of 3 modulo 28.
(b) Solve $3 x \equiv 7 \bmod 28$ [Hint: multiply both sides by inverse of $3 \ldots$]
6. Prove that if a, b are relatively prime, and m divisible by a and also divisible by b, then m is divisible by $a b$. [Hint: $m=a x=b y$, so $a x \equiv 0 \bmod b$.] Deduce from this that the least common multiple of a, b is $a b$.

Is it true without the assumption that a, b are relatively prime?
7. Find all solutions of the following equations
(a) $5 x \equiv 4 \bmod 7$
(b) $7 x \equiv 12 \bmod 30$
(c) In a calendar of some ancient race, all months were exactly 30 days long; however, they used same weeks as we do. If in that calendar, first day of a certain month is Friday, how many weeks will pass before Friday will fall on the 13th day of a month? [Hint: this can be rewritten as some congruence of the form $7 x \equiv \ldots$, where x is the number of weeks.]
*8. (a) Let p be a prime other than 2. Consider the remainders of numbers $2,4,6, \ldots, 2(p-1)$ modulo p. Prove that they are all different and that every possible remainder from 1 to $p-1$ appears in this list exactly once. [Hint: if $2 x \equiv 2 y$, then $2(x-y) \equiv 0$.] Check it by writing this collection of remainders for $p=7$.
(b) Use the previous part to show that

$$
1 \cdot 2 \cdots(p-1) \equiv 2 \cdot 4 \cdots 2(p-1) \quad \bmod p
$$

Deduce from it

$$
2^{p-1} \equiv 1 \quad \bmod p
$$

(c) Show that for any a which is not a multiple of p, we have

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

