Homework for November 7, 2021.

Algebra.

Review the classwork handout and complete the exercises. Solve the remaining problems from the previous homework (pasted below). Solve the following problems.

Recap. In order to prove the equality $A(n)=B(n)$, for any n, using the method of mathematical induction you have to
a. Prove that $A(1)=B(1)$
b. Prove that $A(k+1)-A(k)=B(k+1)-B(k)$
c. Then from assumption $A(k)=B(k)$ and from equality $\left(^{*}\right)$ follows

$$
\begin{equation*}
A(k+1)=B(k+1) \tag{}
\end{equation*}
$$

1. Using mathematical induction, prove that
a. $\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
b. $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
c. $\sum_{k=1}^{n} \frac{1}{k^{2}+k}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}$
d. $\sum_{k=2}^{n} \frac{1}{k^{2}-1}=\frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 4}+\frac{1}{3 \cdot 5}+\cdots+\frac{1}{(n-1) \cdot(n+1)}=\frac{3}{4}-\frac{2 n+1}{2 n(n+1)}$
e. $\forall n, \exists k, 5^{n}+3=4 k$
f. $\forall x>-1, \forall n \geq 2, \quad(1+x)^{n} \geq 1+n x$
2. Prove by mathematical induction that for any natural number n,
a. $5^{n}+6^{n}-1$ is divisible by 10
b. $9^{n+1}-8 n-9$ is divisible by 64
3. Recap. Binomial coefficients are defined by

$$
C_{n}^{k}={ }_{n} C_{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Prove that binomial coefficients satisfy the following identities,

$$
C_{n}^{0}=C_{n}^{n} \Leftrightarrow\binom{n}{0}=\binom{n}{n}=1
$$

$$
\begin{gathered}
C_{n}^{k}=C_{n}^{n-k} \Leftrightarrow\binom{n}{k}=\binom{n}{n-k} \\
C_{n+1}^{k+1}=C_{n}^{k}+C_{n}^{k+1} \Leftrightarrow\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1} \\
C_{n}^{k}=C_{n-1}^{k-1}+C_{n-1}^{k} \Leftrightarrow\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
C_{n+1}^{k}=C_{n}^{k}+C_{n}^{k-1} \Leftrightarrow\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} \\
C_{n}^{k+1}=\binom{n}{k+1}=\binom{n}{k} \frac{n-k}{k+1} \\
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k}+\cdots+\binom{n}{n-1}+\binom{n}{n}=2^{n}
\end{gathered}
$$

Geometry.

Review the classwork handout. Solve the remaining problems from the previous homework; consider solutions explained in the classwork handout. Try solving the following additional problems. In all the problems, you are only allowed to use theorems we had proven before.

Problems.

1. Prove that for any triangle $A B C$ with sides a, b and c, the area, $S \leq$ $\frac{1}{4}\left(b^{2}+c^{2}\right)$.
2. In an isosceles triangle $A B C$ with the side $|A B|=|B C|=b$, the segment $\left|A^{\prime} C^{\prime}\right|=m$ connects the intersection points of the bisectors, $A A^{\prime}$ and $C C^{\prime}$ of the angles at the base, $A C$, with the corresponding opposite sides, $A^{\prime} \in B C$ and $C^{\prime} \in A B$. Find the length of the base, $|A C|$ (express through given lengths, b and m).
3. Prove that for any point on a side of an equilateral triangle, the sum of the distances to the two other sides is the same constant. What is this distance (the side of the triangle is a)?
4. Distances from the point M inside an equilateral triangle $A B C$ to the respective sides of this triangle are, d_{a}, d_{b} and d_{c}. Find the altitude of this triangle.
5. Three lines parallel to the respective sides of the triangle $A B C$ intersect at a single point, which lies inside this triangle. These lines split the triangle $A B C$ into 6 parts, three of which are triangles with areas S_{1}, S_{2}, and S_{3}. Show that the area of the triangle $A B C, S=$ $\left(\sqrt{S_{1}}+\sqrt{S_{2}}+\sqrt{S_{3}}\right)^{2}$.
