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Geometry.  

The Method of the Center of Mass (mass points): Solving problems using the 

Law of Lever (mass points). Menelaus theorem. Pappus theorem.  

Heuristic Definitions of the Center of Mass (Center of Gravity) known to 

Greeks.  

1. The point such that if suspended at it, an 

object will remain motionless in the 

equilibrium, independent of the position that 

it is placed. 

2. The point common to all the lines passing 

through the point at which the object is 

suspended 

3. The point common to all lines on which the 

object balances. 

Archimedes’ postulates on the properties of the Center of Gravity (COM).  

1. The COM of similar figures are similarly situated.  

2. The COM of a convex figure lies within the figure. 

3. If an object is cut in two pieces, then its COM 

lies on the line joining the COM’s of the 

pieces, and its position satisfies the Law of 

Lever. 

However, the situation is much simpler if we only consider point masses.  

Properties of the Center of Mass for a system of point masses. 

1. Every system of finite number of point masses has unique center of 
mass (COM).  



2. For two point masses, 𝑚1 and 𝑚2, the COM belongs to the segment 
connecting these points; its position is determined by the Archimedes 
lever rule: the point’s mass times the distance from it to the COM is the 
same for both points, 𝑚1𝑑1 = 𝑚2𝑑2.  

3. The position of the system’s center of mass does not change if we move 
any subset of point masses in the system to the center of mass of this 
subset. In other words, we can replace any number of point masses with 
a single point mass, whose mass equals the sum of all these masses and 
which is positioned at their COM.  

Solving problems using the COM.  

Given a system of points and lines, one can derive various relations, such as 

concurrence of particular lines connecting some of the points, or the ratio of 

the lengths of different segments by associating certain masses with these 

points (i.e. placing point masses at their positions) and considering the center 

of mass of the obtained system of mass points.  

Exercise. Prove that the medians of an arbitrary triangle 

𝐴𝐵𝐶 are concurrent (cross at the same point 𝑀).  

Exercise. Prove that the bisectors of an arbitrary triangle 

𝐴𝐵𝐶 are concurrent (cross at the same point 𝑂).  

Exercise. Prove that the altitudes of an arbitrary triangle 𝐴𝐵𝐶 are concurrent 

(cross at the same point 𝑂).  

COM solutions of the selected homework problems. 

1. Problem. Prove that medians of a triangle divide one another in the 

ratio 2:1, in other words, the medians of a triangle “trisect” one another 

(Coxeter, Gretzer, p.8). 

Solution. Load vertices 𝐴, 𝐵 and 𝐶 with equal masses, 𝑚. Then, the 

center of mass (COM) of the three masses is at the intersection of the 

three medians, because it has to belong to each segment connecting the 

mass at the vertex of the triangle with the COM of the other two masses, 

A

B

C
M

A’
C’

B’



i.e. the middle of the opposite side. COM this belongs to all three 

medians and is the centroid, 𝑂 of the triangle. It divides each median in 

the 2:1 ratio because it is a COM of mass 𝑚 at the vertex and a mass 2𝑚 

at the middle of the opposite side.   

2. Problem. In isosceles triangle 𝐴𝐵𝐶 point 𝐷 divides the 

side 𝐴𝐶 into segments such that |𝐴𝐷|: |𝐶𝐷| = 1: 2. If 𝐶𝐻 

is the altitude of the triangle and point 𝑂 is the 

intersection of 𝐶𝐻 and 𝐵𝐷, find the ratio |𝑂𝐻| to |𝐶𝐻|.  

Solution.  

a. Using the similarity and Thales theorem. First, let us 

perform a supplementary construction by drawing 

the segment 𝐷𝐸 parallel to 𝐴𝐵, 𝐷𝐸||𝐴𝐵, where point 

𝐸 belongs to the side 𝐶𝐵, and point 𝐹 to 𝐷𝐸 and the 

altitude 𝐶𝐻. Notice the similar triangles, 𝐴𝑂𝐻~𝐷𝑂𝐹, 

which implies, 
|𝑂𝐹|

|𝑂𝐻|
=

|𝐷𝐹|

|𝐴𝐻|
. By Thales theorem, 

|𝐴𝐻|

|𝐷𝐹|
=

|𝐴𝐶|

|𝐴𝐷|
= 1 +

|𝐶𝐷|

|𝐴𝐷|
=

3

2
, and 

|𝑂𝐹|

|𝑂𝐻|
=

|𝐷𝐹|

|𝐴𝐻|
=

2

3
, so that 

|𝐹𝐻|

|𝑂𝐻|
=

|𝐹𝑂|+|𝑂𝐻|

|𝑂𝐻|
=

5

3
. 

|𝐶𝐻|

|𝑂𝐻|
=

|𝐶𝐻|

|𝐹𝐻|

|𝐹𝐻|

|𝑂𝐻|
= 3 ∙

5

3
= 5, because 

|𝐶𝐻|

|𝐹𝐻|
= 1 +

|𝐶𝐹|

|𝐹𝐻|
= 1 +

|𝐶𝐷|

|𝐷𝐴|
. Therefore, the sought ratio 

is, 
|𝑂𝐻|

|𝐶𝐻|
=

1

5
.  

b. Using the Method of the Center of Mass. Load vertices 𝐴, 𝐵 and 𝐶 

with masses 2𝑚, 2𝑚, and 𝑚, respectively. Then, 𝐻 is the COM of 

masses at 𝐴 and 𝐵, and 𝐷 is the COM of masses at 𝐴 and 𝐶, and 𝑂 is 

the COM of all 3 masses in the vertices of the triangle 𝐴𝐵𝐶. Therefore, 

|𝑂𝐶|: |𝑂𝐻| = (2𝑚 + 2𝑚): 𝑚 = 4: 1, |𝑂𝐻|: |𝐶𝐻| = 1: 5.  

3. Problem. Point 𝐷 belongs to the continuation 

of side 𝐶𝐵 of the triangle 𝐴𝐵𝐶 such that 

|𝐵𝐷|  =  |𝐵𝐶|. Point 𝐹 belongs to side 𝐴𝐶, 
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and |𝐹𝐶|  =  3|𝐴𝐹|. Segment 𝐷𝐹 intercepts side 𝐴𝐵 at point 𝑂. Find the 

ratio |𝐴𝑂|: |𝑂𝐵|.   

Solution.  

a. Using the similarity and Thales theorem. First, let us perform a 

supplementary construction by drawing the segment 𝐵𝐸 parallel to 

𝐴𝐶, 𝐵𝐸||𝐴𝐶, where 𝐸 belongs to the side 𝐴𝐷 

of the triangle 𝐴𝐶𝐷. 𝐵𝐸 is the mid-line of the 

triangle 𝐴𝐶𝐷, and, by Thales, also of 𝐴𝐹𝐷 

and 𝐹𝐷𝐶. Therefore, |𝐸𝐺| =
1

2
|𝐴𝐹|, |𝐺𝐵| =

1

2
|𝐹𝐶| and |𝐸𝐵| =

1

2
|𝐴𝐶|, so 

|𝐵𝐺|

|𝐸𝐺|
=

|𝐹𝐶|

|𝐴𝐹|
= 3. 

On the other hand, again, by Thales, or, 

noting similar triangles 𝐴𝑂𝐹~𝐵𝑂𝐺, 
|𝐴𝑂|

|𝑂𝐵|
=

|𝐴𝐹|

|𝐺𝐵|
= 2

|𝐴𝐹|

|𝐴𝐶|
=

2

3
.  

b. Using the Method of the Center of Mass. Load vertices 𝐴, 𝐶 and 𝐷 

with masses 3𝑚, 𝑚 and 𝑚, respectively. Then, 𝐹 is the center of mass 

(COM) of 𝐴 and 𝐶, 𝐵 is the COM of 𝐷 and 𝐶,  and 𝑂 is the COM of the 

triangle 𝐴𝐶𝐷, |𝐴𝑂|: |𝑂𝐵| =  (𝑚 + 𝑚): 3𝑚 =  2: 3.  
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Theorem (Pappus). If 𝐴, 𝐶, 𝐸 are three points on one line, 𝐵, 𝐷 and 𝐹 on 

another, and if three lines, 𝐴𝐵, 𝐶𝐷, 𝐸𝐹, meet 𝐷𝐸, 𝐹𝐴, 𝐵𝐶, respectively, then the 

three points of intersection, 𝐿, 𝑀, 𝑁, are 

collinear.  

This is one of the most important theorems in 

planimetry, and plays important role in the 

foundations of projective geometry. There are 

a number of ways to prove it. For example, 

one can consider five triads of points, 𝐿𝐷𝐸, 

𝐴𝑀𝐹, 𝐵𝐶𝑁, 𝐴𝐶𝐸 and 𝐵𝐷𝐹, and apply Menelaus 

theorem to each triad. Then, appropriately dividing all 5 thus obtained 

equations, we can obtain the equation proving that 𝐿𝑀𝑁 are collinear, too, 

also by the Menelaus theorem. However, one can prove the Pappus theorem 

directly, using the method of point masses.  

Instead of simply proving the theorem, consider the following problem.  

Problem. Using only pencil and straightedge, continue the line to the right of 

the drop of ink on the paper without 

touching the drop. 

 Solution by the Method of the Center of Mass. 

Construct triangle 𝑂𝐴𝐵, which encloses the drop, and with the vertex 𝑂 on the 

given line (𝑂𝐷). Let 𝑂1 be the crossing point of (𝑂𝐷) and the side 𝐴𝐵. Let us 

now load vertices 𝐴 and 𝐵 of the triangle with point masses 𝑚𝐴 and 𝑚𝐵, such 

that their center of mass (COM) is at the point 𝑂1. Then, each point of the 

(Cevian) segment 𝑂𝑂1 is the center of mass of the triangle 𝑂𝐴𝐵 for some point 

mass 𝑚𝑂 loaded on the vertex 𝑂. The (Cevian) segments from vertices 𝐴 and 

𝐵, which pass through the center of mass of the triangle 𝐶, connect each of 

these vertices with the center of mass of the other two vertices on the 

opposite side of the triangle, 𝑂𝐵 and 𝑂𝐴, respectively.  

For the mass 𝑚𝑂1 loaded on the vertex 𝑂, the center of mass of the triangle is 

𝐶1, and the centers of mass of the sides 𝑂𝐴 and 𝑂𝐵 are 𝐴1 and 𝐵1, respectively. 
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Similarly, 𝐶2, 𝐴2 and  𝐵2 are those for the mass 𝑚𝑂2 on the vertex 𝑂. The COM 

of the side 𝐴𝐵 is always at the point 𝑂1, independent of mass 𝑚𝑂.  

If we can show that segments 𝐴1𝐵2 and 𝐴2𝐵1 cross the given line (𝑂𝐷) at the 

same point, 𝐷, then our problem is solved, as we can draw Cevians 𝐵𝐴2 and 

𝐴𝐵2, whose crossing points are on the segment 𝑂𝑂1 on the other side of the 

drop, by sequentially drawing Cevians 𝐵𝐴1 and 𝐴𝐵1 and segments 𝐴1𝐵2, 𝐵1𝐴2, 

Figure 1(a). 

Let us load vertices 𝑂, 𝐴 and 𝐵 

with masses 𝑚𝑂1 + 𝑚𝑂2, 2𝑚𝐴 

and 2𝑚𝐵, respectively, Figure 

1(b). The center of mass of 𝑂𝐴𝐵 

is now at some point 𝐶, in-

between 𝐶1 and 𝐶2 (actually, it is 

not important where it is on the 

line 𝑂𝑂1). Let us now move point 

masses 𝑚𝑂1 and 𝑚𝐴 to their 

center of mass 𝐴1 on the side 𝑂𝐴, 

𝑚𝑂2 and 𝑚𝐵 to their center of 

mass 𝐵2 on the side 𝑂𝐵, and 𝑚𝐴 

and 𝑚𝐵 to their center of mass 

𝑂1 on the side 𝐴𝐵. Now masses 

are at the vertices of the triangle 

𝐴1𝐵2𝑂1 with the same center of 

mass, 𝐶, Figure 1(c). 

Consequently, the crossing point 

𝐷 of segments 𝐴1𝐵2 and 𝑂𝑂1 is the center of mass for masses 𝑚𝑂1 + 𝑚𝐴 and 

𝑚𝑂2 + 𝑚𝐵 placed at points 𝐴1 and 𝐵2, respectively. Point 𝐶 then is the center 

of mass for 𝑚𝑂1 + 𝑚𝑂2 + 𝑚𝐴  + 𝑚𝐵 at point 𝐷 and 𝑚𝐴  + 𝑚𝐵 at point 𝑂1, 

Figure 1(e). Repeating similar arguments for the triangle 𝐴2𝐵1𝑂1, Figure 

1(d,f), we see that point 𝐷 is also the crossing point of segments 𝐴1𝐵2 and 

𝑂𝑂1. Therefore, 𝐷 is the crossing point of all three segments, 𝐴1𝐵2, 𝐴2𝐵1 and 

𝑂𝑂1, which completes the proof.  


