Geometry.

The Method of the Center of Mass (mass points): Solving problems using the Law of Lever (mass points). Menelaus theorem. Pappus theorem.

Heuristic Definitions of the Center of Mass (Center of Gravity) known to Greeks.

1. The point such that if suspended at it, an object will remain motionless in the equilibrium, independent of the position that it is placed.
2. The point common to all the lines passing through the point at which the object is suspended
3. The point common to all lines on which the object balances.

Archimedes' postulates on the properties of the Center of Gravity (COM).

1. The COM of similar figures are similarly situated.
2. The COM of a convex figure lies within the figure.
3. If an object is cut in two pieces, then its COM lies on the line joining the COM's of the pieces, and its position satisfies the Law of Lever.

However, the situation is much simpler if we only consider point masses.
Properties of the Center of Mass for a system of point masses.

1. Every system of finite number of point masses has unique center of mass (COM).
2. For two point masses, m_{1} and m_{2}, the COM belongs to the segment connecting these points; its position is determined by the Archimedes lever rule: the point's mass times the distance from it to the COM is the same for both points, $m_{1} d_{1}=m_{2} d_{2}$.
3. The position of the system's center of mass does not change if we move any subset of point masses in the system to the center of mass of this subset. In other words, we can replace any number of point masses with a single point mass, whose mass equals the sum of all these masses and which is positioned at their COM.

Solving problems using the COM.

Given a system of points and lines, one can derive various relations, such as concurrence of particular lines connecting some of the points, or the ratio of the lengths of different segments by associating certain masses with these points (i.e. placing point masses at their positions) and considering the center of mass of the obtained system of mass points.

Exercise. Prove that the medians of an arbitrary triangle $A B C$ are concurrent (cross at the same point M).

Exercise. Prove that the bisectors of an arbitrary triangle $A B C$ are concurrent (cross at the same point O).

Exercise. Prove that the altitudes of an arbitrary triangle $A B C$ are concurrent (cross at the same point O).

COM solutions of the selected homework problems.

1. Problem. Prove that medians of a triangle divide one another in the ratio 2:1, in other words, the medians of a triangle "trisect" one another (Coxeter, Gretzer, p.8).

Solution. Load vertices A, B and C with equal masses, m. Then, the center of mass (COM) of the three masses is at the intersection of the three medians, because it has to belong to each segment connecting the mass at the vertex of the triangle with the COM of the other two masses,
i.e. the middle of the opposite side. COM this belongs to all three medians and is the centroid, O of the triangle. It divides each median in the 2:1 ratio because it is a COM of mass m at the vertex and a mass $2 m$ at the middle of the opposite side.
2. Problem. In isosceles triangle $A B C$ point D divides the side $A C$ into segments such that $|A D|:|C D|=1: 2$. If $C H$ is the altitude of the triangle and point O is the intersection of CH and BD , find the ratio $|\mathrm{OH}|$ to $|\mathrm{CH}|$.

Solution.

a. Using the similarity and Thales theorem. First, let us perform a supplementary construction by drawing the segment $D E$ parallel to $A B, D E \| A B$, where point
 E belongs to the side $C B$, and point F to $D E$ and the altitude $C H$. Notice the similar triangles, $A O H \sim D O F$, which implies, $\frac{|O F|}{|O H|}=\frac{|D F|}{|A H|}$. By Thales theorem, $\frac{|A H|}{|D F|}=$ $\frac{|A C|}{|A D|}=1+\frac{|C D|}{|A D|}=\frac{3}{2}$, and $\frac{|O F|}{|O H|}=\frac{|D F|}{|A H|}=\frac{2}{3}$, so that $\frac{|F H|}{|O H|}=$ $\frac{|\mathrm{FO}|+|\mathrm{OH}|}{|\mathrm{OH\mid}|}=\frac{5}{3} \cdot \frac{|\mathrm{CH}|}{|\mathrm{OH\mid}|}=\frac{\left.|\mathrm{CH}| \frac{|\mathrm{FH}|}{|\mathrm{FH}|} \right\rvert\, \mathrm{OH\mid}}{\mathrm{OH} \mid} 3 \cdot \frac{5}{3}=5$, because $\frac{|C H|}{|F H|}=1+\frac{|C F|}{|F H|}=1+\frac{|C D|}{|D A|}$. Therefore, the sought ratio is, $\frac{|O H|}{|\mathrm{CH\mid}|}=\frac{1}{5}$.

b. Using the Method of the Center of Mass. Load vertices A, B and C with masses $2 m, 2 m$, and m, respectively. Then, H is the COM of masses at A and B, and D is the COM of masses at A and C, and O is the COM of all 3 masses in the vertices of the triangle $A B C$. Therefore, $|O C|:|O H|=(2 m+2 m): m=4: 1,|O H|:|C H|=1: 5$.
3. Problem. Point D belongs to the continuation of side $C B$ of the triangle $A B C$ such that $|B D|=|B C|$. Point F belongs to side $A C$,

and $|F C|=3|A F|$. Segment $D F$ intercepts side $A B$ at point O. Find the ratio $|A O|:|O B|$.

Solution.

a. Using the similarity and Thales theorem. First, let us perform a supplementary construction by drawing the segment $B E$ parallel to $A C, B E \| A C$, where E belongs to the side $A D$ of the triangle $A C D . B E$ is the mid-line of the triangle $A C D$, and, by Thales, also of $A F D$ and $F D C$. Therefore, $|E G|=\frac{1}{2}|A F|,|G B|=$ $\frac{1}{2}|F C|$ and $|E B|=\frac{1}{2}|A C|$, so $\frac{|B G|}{|E G|}=\frac{|F C|}{|A F|}=3$. On the other hand, again, by Thales, or, noting similar triangles $A O F \sim B O G, \frac{|A O|}{|O B|}=$
 $\frac{|A F|}{|G B|}=2 \frac{|A F|}{|A C|}=\frac{2}{3}$.
b. Using the Method of the Center of Mass. Load vertices A, C and D with masses $3 m, m$ and m, respectively. Then, F is the center of mass (COM) of A and C, B is the COM of D and C, and O is the COM of the triangle $A C D,|A O|:|O B|=(m+m): 3 m=2: 3$.

Theorem (Pappus). If A, C, E are three points on one line, B, D and F on another, and if three lines, $A B, C D, E F$, meet $D E, F A, B C$, respectively, then the three points of intersection, L, M, N, are collinear.

This is one of the most important theorems in planimetry, and plays important role in the foundations of projective geometry. There are a number of ways to prove it. For example, one can consider five triads of points, $L D E$,
 $A M F, B C N, A C E$ and $B D F$, and apply Menelaus theorem to each triad. Then, appropriately dividing all 5 thus obtained equations, we can obtain the equation proving that $L M N$ are collinear, too, also by the Menelaus theorem. However, one can prove the Pappus theorem directly, using the method of point masses.

Instead of simply proving the theorem, consider the following problem.

Problem. Using only pencil and straightedge, continue the line to the right of the drop of ink on the paper without touching the drop.

Solution by the Method of the Center of Mass.

Construct triangle $O A B$, which encloses the drop, and with the vertex O on the given line ($O D$). Let O_{1} be the crossing point of $(O D)$ and the side $A B$. Let us now load vertices A and B of the triangle with point masses m_{A} and m_{B}, such that their center of mass (COM) is at the point O_{1}. Then, each point of the (Cevian) segment $O O_{1}$ is the center of mass of the triangle $O A B$ for some point mass m_{O} loaded on the vertex O. The (Cevian) segments from vertices A and B, which pass through the center of mass of the triangle C, connect each of these vertices with the center of mass of the other two vertices on the opposite side of the triangle, $O B$ and $O A$, respectively.

For the mass $m_{O 1}$ loaded on the vertex O, the center of mass of the triangle is C_{1}, and the centers of mass of the sides $O A$ and $O B$ are A_{1} and B_{1}, respectively.

Similarly, C_{2}, A_{2} and B_{2} are those for the mass $m_{O 2}$ on the vertex O. The COM of the side $A B$ is always at the point O_{1}, independent of mass m_{0}.

If we can show that segments $A_{1} B_{2}$ and $A_{2} B_{1}$ cross the given line (OD) at the same point, D, then our problem is solved, as we can draw Cevians $B A_{2}$ and $A B_{2}$, whose crossing points are on the segment $O O_{1}$ on the other side of the drop, by sequentially drawing Cevians $B A_{1}$ and $A B_{1}$ and segments $A_{1} B_{2}, B_{1} A_{2}$, Figure 1(a).

Let us load vertices O, A and B with masses $m_{O 1}+m_{O 2}, 2 m_{A}$ and $2 m_{B}$, respectively, Figure 1(b). The center of mass of $O A B$ is now at some point C, inbetween C_{1} and C_{2} (actually, it is not important where it is on the line $O O_{1}$). Let us now move point masses $m_{O 1}$ and m_{A} to their center of mass A_{1} on the side $O A$, $m_{O 2}$ and m_{B} to their center of mass B_{2} on the side $O B$, and m_{A} and m_{B} to their center of mass O_{1} on the side $A B$. Now masses are at the vertices of the triangle $A_{1} B_{2} O_{1}$ with the same center of mass, C, Figure 1(c).
Consequently, the crossing point

(b)

$m_{01}+m_{02}+m_{A}+m_{B} B_{B_{2}}$
 D of segments $A_{1} B_{2}$ and $O O_{1}$ is the center of mass for masses $m_{O 1}+m_{A}$ and $m_{O 2}+m_{B}$ placed at points A_{1} and B_{2}, respectively. Point C then is the center of mass for $m_{O 1}+m_{O 2}+m_{A}+m_{B}$ at point D and $m_{A}+m_{B}$ at point O_{1}, Figure 1(e). Repeating similar arguments for the triangle $A_{2} B_{1} O_{1}$, Figure $1(\mathrm{~d}, \mathrm{f})$, we see that point D is also the crossing point of segments $A_{1} B_{2}$ and $O O_{1}$. Therefore, D is the crossing point of all three segments, $A_{1} B_{2}, A_{2} B_{1}$ and $O O_{1}$, which completes the proof.

