Homework for April 3, 2022.

Algebra.

Review the classwork handout. Try solving the following problems.
Remember: you do not necessarily need to solve all problems, just solve as many as you can within the time you can dedicate to Math 9 homework.

1. From the picture, find in which interval(s) the function $y=f(x)$
a. is monotonic
b. has the same sign
2. Find all possible values of a such that equation $x^{2}+a x+9=0$ has two different roots, both of which are less than -1 .
3. Draw graphs of the following functions
a. $y=\left|\frac{1}{x-2}+1\right|$

b. $y=\frac{1}{|x|-2}+1$
4. Solve the following equations
a. (Skanavi 7.141) $3 \cdot 4^{x}+\frac{1}{3} \cdot 9^{x+2}=6 \cdot 4^{x}-\frac{1}{2} \cdot 9^{x+1}$
b. (Skanavi 7.143) $\sqrt{\log _{x} \sqrt{x}}=-\log _{x} 5$
c. (Skanavi 7.153) $\frac{\log _{2}\left(9-2^{x}\right)}{3-x}=1$
d. (Skanavi 7.160) $\log _{a} x+\log _{a^{2}} x+\log _{a^{3}} x=11$
e. (Skanavi 7.184) $2^{x-1}+2^{x-4}+2^{x-2}=6.5+3.25+1.625+\cdots$
f. (Skanavi 7.190) $9^{x}+6^{x}=2^{2 x+1}$
g. (Skanavi 7.197) $4^{\log x+1}-6^{\log x}-2 \cdot 3^{\log x^{2}+2}=0$
h. (Skanavi 7.299) $\left(x^{2}-x-1\right)^{x^{2}-1}=1$
i. (Skanavi 7.304) find integer root: $\log _{\sqrt{x}}(x+12)=8 \log _{x+12} x$
j. (Skanavi 7.308) $\log _{x+3}\left(3-\sqrt{1-2 x+x^{2}}\right)=\frac{1}{2}$
5. (Skanavi 7.277) Equation $4^{x}+10^{x}=25^{x}$ has a single root. Find this root. Is it positive or negative? Is it larger or less than 1?
6. (Skanavi 7.280) Show that:

$$
\log _{3} 2 \cdot \log _{4} 3 \cdot \log _{5} 4 \cdot \log _{6} 5 \cdot \log _{7} 6 \cdot \log _{8} 7=\frac{1}{3}
$$

Geometry.

Please, complete the previous homework assignments from this year. Review the classwork handout on vectors. Solve the following problems.

Problems.

1. In a triangle $A B C$, vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{B C}$ (c, b and a) are the sides. $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$ are the medians.
a. Express vectors $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$ through vectors \mathbf{c}, \mathbf{b} and \mathbf{a}.

b. Find the sum of vectors $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$.
2. Solve the same problem for bisectors $\overrightarrow{A N}, \overrightarrow{C M}$ and $\overrightarrow{B P}$ in a triangle $A B C$.
3. Coxeter, Greitzer, problem \#9 to Sec. 2.1 (p.31): How far away is the horizon as seen from the top of a mountain 1 mile high? (Assume the Earth to be a sphere of diameter 7920 miles.)
4. In a rectangle $A B C D, A_{1}, B_{1}, C_{1}$ and D_{1} are the mid-points of sides $A B$, $C D, B C$ and $D A$, respectively. M is the crossing point of the segments $A_{1} B_{1}$, and $C_{1} D_{1}$, connecting two pairs of midpoints.
a. Express vector $\overrightarrow{A_{1} M}$ through $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C D}$.
b. Prove that M is the mid-point of segments, $A_{1} B_{1}$ and $C_{1} D_{1}$, i.e.

$$
\left|A_{1} M\right|=\left|M B_{1}\right| \text { and }\left|C_{1} M\right|=\left|M D_{1}\right| .
$$

5. In a parallelogram $A B C D$, find $\overrightarrow{A B}+\overrightarrow{B D}-2 \overrightarrow{A D}$.
6. M is a crossing point of the medians in a triangle $A B C$. Prove that $\overrightarrow{A M}=\frac{1}{3}(\overrightarrow{A B}+\overrightarrow{A C})$.
7. For three points, $A(-1,3), B(2,-5)$ and $C(3,4)$, find the (coordinates of) following vectors,
a. $\overrightarrow{A B}-\overrightarrow{B C}$
b. $\overrightarrow{A B}+\overrightarrow{C B}+\overrightarrow{A C}$
c. $\overrightarrow{A B}+\frac{1}{2} \overrightarrow{B C}+\frac{1}{3} \overrightarrow{C A}$
8. For two triangles, $A B C$ and $A_{1} B_{1} C_{1}, \overrightarrow{A A_{1}}+\overrightarrow{B B_{1}}+\overrightarrow{C C_{1}}=0$. Prove that medians of these two triangles cross at the same point M.
