Algebra.

Trigonometric form of complex numbers. Geometric interpretation.

Let us consider complex numbers with the absolute value of 1 ,
$z_{1}=x_{1}+i y_{1},\left|z_{1}\right|^{2}=z_{1} \overline{z_{1}}=x_{1}{ }^{2}+y_{1}{ }^{2}=1$.
There is an obvious one-to-one correspondence between such numbers and points $Z_{1}\left(x_{1}, y_{1}\right)$ on a circle of unit radius. Hence, we can express such numbers in terms of an angle, φ, parameterizing points on the unit circle,
$z_{1}=x_{1}+i y_{1}=\cos \varphi+i \sin \varphi$.

More generally, any complex number, $z=x+i y$, whose absolute value is $|z|=\sqrt{z \bar{Z}}=\sqrt{x^{2}+y^{2}}=r$, can be written in the trigonometric form as, $z=x+i y=r(\cos \varphi+i \sin \varphi)$.

Geometrically, it is represented by a point $Z(x, y)$ on a circle of radius $r=|z|$. Position of this point is specified by an angle, φ, which is conventionally measured counterclockwise from the positive direction of the X-axis. Angle φ is called the argument of the complex number z and is denoted $\varphi=\operatorname{Arg}(z)$. Thus, instead of describing a complex number by its real and imaginary part, i.e. its coordinates, (x, y), we can describe it by its magnitude and argument (polar coordinates), (r, φ), where $r \geq 0$ and $0 \leq \varphi=\operatorname{Arg}(z)<360^{\circ}$.

It is now easy to prove the following important property of the multiplication of complex numbers.

Theorem. When we multiply two complex numbers, magnitudes multiply and arguments add,

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|, \operatorname{Arg}\left(z_{1} z_{2}\right)=\left(\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)\right) \bmod 360^{\circ} .
$$

Proof. Let $\operatorname{Arg}\left(z_{1}\right)=\varphi_{1}$ and $\operatorname{Arg}\left(z_{2}\right)=\varphi_{2}$, so $z_{1}=\left|z_{1}\right|\left(\cos \varphi_{1}+i \sin \varphi_{1}\right)$ and $z_{2}=\left|z_{2}\right|\left(\cos \varphi_{2}+i \sin \varphi_{2}\right)$. Perform the multiplication directly,

$$
z_{1} z_{2}=\left|z_{1}\right|\left(\cos \varphi_{1}+i \sin \varphi_{1}\right)\left|z_{2}\right|\left(\cos \varphi_{2}+i \sin \varphi_{2}\right)=
$$

$$
\begin{gathered}
\left|z_{1}\right|\left|z_{2}\right|\left(\cos \varphi_{1} \cos \varphi_{2}-\sin \varphi_{1} \sin \varphi_{2}+i\left(\sin \varphi_{1} \cos \varphi_{2}+\cos \varphi_{1} \sin \varphi_{2}\right)\right) \\
=\left|z_{1}\right|\left|z_{2}\right|\left(\cos \left(\varphi_{1}+\varphi_{2}\right)+i \sin \left(\varphi_{1}+\varphi_{2}\right)\right)
\end{gathered}
$$

Complex numbers whose arguments would differ by multiples of 360° are identical and correspond to the same point on the complex plane. Hence, the argument is computed $\bmod 360^{\circ}$, ensuring that $0 \leq \varphi_{1}+\varphi_{2}<360^{\circ}$.

Theorem. Multiplication of a complex number, $z=x+i y=r(\cos \varphi+i \sin \varphi)$, by a complex number of unit magnitude and argument ψ,
$z_{\psi}=x_{\psi}+i y_{\psi}=\cos \psi+i \sin \psi$,
corresponds to a counterclockwise rotation of the point, $Z(x, y)$, on the complex plane, by an angle ψ,

$$
\left|z z_{\psi}\right|=r, \operatorname{Arg}\left(z z_{\psi}\right)=\varphi+\psi
$$

Proof. Indeed, perform the multiplication directly,

$$
\begin{aligned}
& z z_{\psi}=(x+i y)\left(x_{\psi}+i y_{\psi}\right)=r(\cos \varphi+i \sin \varphi)(\cos \psi+i \sin \psi) \\
& \quad=r(\cos \varphi \cos \psi-\sin \varphi \sin \psi+i(\sin \varphi \cos \psi+\cos \varphi \sin \psi)) \\
& \quad=r(\cos (\varphi+\psi)+i \sin (\varphi+\psi))
\end{aligned}
$$

It is clear that multiplication by a complex number with magnitude r^{\prime} and argument ψ is equivalent to the combination of multiplication by a number of unit magnitude and argument ψ, and y the real number r^{\prime}.

Theorem. Multiplication of a complex number, $z=x+i y$, by a complex number with magnitude r^{\prime} and argument ψ,
$w=r^{\prime}(\cos \psi+i \sin \psi)$,
results in a point on the complex plane, which is obtained from the point $Z(x, y)$ by the combination of a rotation by angle ψ and a homothety (rescaling) with scale factor r^{\prime}.
Multiplication of all complex numbers by a complex number $w=r^{\prime}(\cos \psi+$ $i \sin \psi$) is a transformation of the complex plane, which maps complex plane on itself. Identifying multiplication by a complex number with such transformation, we can state the following.

Theorem. Multiplication by a complex number with magnitude r^{\prime} and argument $\psi, w=r^{\prime}(\cos \psi+i \sin \psi)$, is a combination of rotation by angle ψ and homothety (rescaling) with scale factor r^{\prime}.

De Moivre's formula.

Theorem. The formula named after Abraham de Moivre states that for any complex number, $z=x+i y=r(\cos \varphi+i \sin \varphi)$, and for any integer $n \in \mathbb{N}$,

$$
z^{n}=(r(\cos \varphi+i \sin \varphi))^{n}=r^{n}(\cos n \varphi+i \sin n \varphi)
$$

Proof 1 (Mathematical induction).

1. Base case, $n=1: z^{1}=r(\cos \varphi+i \sin \varphi)$ is true.
2. $I(n)=>I(n+1)$. Assume $z^{n}=r^{n}(\cos n \varphi+i \sin n \varphi)$ is true. Then,

$$
\begin{aligned}
z^{n+1}=z \cdot z^{n} & =r(\cos \varphi+i \sin \varphi) \cdot(r(\cos \varphi+i \sin \varphi))^{n} \\
& =r(\cos \varphi+i \sin \varphi) r^{n}(\cos n \varphi+i \sin n \varphi) \\
& =r^{n+1}(\cos \varphi \cos n \varphi-\sin \varphi \sin n \varphi \\
& +i(\sin \varphi \cos n \varphi+\cos \varphi \sin n \varphi)) \\
& =r^{n+1}(\cos (n+1) \varphi+i \sin (n+1) \varphi)
\end{aligned}
$$

Proof 2 (Geometrical).
$z^{n}=(r(\cos \varphi+i \sin \varphi))^{n}=r(\cos \varphi+i \sin \varphi) r(\cos \varphi+i \sin \varphi) \ldots . r(\cos \varphi+$ $i \sin \varphi$)

By property of the multiplication of complex numbers, absolute values multiply, while arguments add. Therefore,
$\left|z^{n}\right|=|z|^{n}=r^{n}$, and $\operatorname{Arg}\left(z^{n}\right)=n \operatorname{Arg}(z)=n \varphi$, wherefrom it follows that $z^{n}=r^{n}(\cos n \varphi+i \sin n \varphi)$.

n-th root.

The formula of de Moivre allows us to compute n-th root of a complex number. Suppose we want to solve the equation,

$$
w^{n}=z
$$

where $w, z \in \mathbb{C}$, so w is the n-th root of z. According to de Moivre's formula, if $w=|w|(\cos \psi+i \sin \psi)$, then $w^{n}=|w|^{n}(\cos n \psi+i \sin n \psi)$. Denoting $z=$ $r(\cos \varphi+i \sin \varphi)$, we can rewrite the equation as,

$$
w^{n}=|w|^{n}(\cos n \psi+i \sin n \psi)=r(\cos \varphi+i \sin \varphi)
$$

One obvious solution is $r=|w|^{n}$ and $\varphi=n \psi, w=\sqrt[n]{r}\left(\cos \frac{\varphi}{n}+i \sin \frac{\varphi}{n}\right)$. However, because $\varphi=\operatorname{Arg}(z)=\operatorname{Arg}\left(w^{n}\right)$ and $\psi=\operatorname{Arg}(w)$ are determined modulo 360° (2π radians), there are other solutions, too, satisfying the above equation, such as $w=\sqrt[n]{r}\left(\cos \frac{\varphi+2 \pi}{n}+i \sin \frac{\varphi+2 \pi}{n}\right)$. Generally, we must have $r=|w|^{n}$, and $\varphi=\operatorname{Arg}(z)=\operatorname{Arg}\left(w^{n}\right) \bmod 360^{\circ}=n \operatorname{Arg}(w) \bmod 360^{\circ}=$ $n \psi \bmod 360^{\circ}$. Altogether, there are n solutions,

$$
w=\sqrt[n]{r}\left(\cos \frac{\varphi+2 \pi k}{n}+i \sin \frac{\varphi+2 \pi k}{n}\right), 0 \leq k<n
$$

This is a special case of the following extremely important result, called the fundamental theorem of algebra.

Theorem. Any polynomial with complex coefficients of degree n has exactly n roots (counting with multiplicities).

There is no simple proof of this theorem (and, in fact, no purely algebraic proof: all the known proofs use some geometric arguments).
In particular, since any polynomial with real coefficients can be considered as a special case of a polynomial with complex coefficients, this shows that any real polynomial of degree n has exactly n complex roots.

