
April 10, 2022        Math 9 

Geometry.  

Solving vector problems. 

Problem. In a pentagon 𝐴𝐵𝐶𝐷𝐸, 𝑀, 𝐾, 𝑁 and 𝐿 are the midpoints of the sides 
𝐴𝐸, 𝐸𝐷, 𝐷𝐶, and 𝐶𝐵, respectively. 𝐹 and 𝐺 are the 
midpoints of thus obtained segments 𝑀𝑁 and 𝐾𝐿 (see 
Figure). Show that the segment 𝐹𝐺 is parallel to 𝐴𝐵 and 
its length is ¼ of that of 𝐴𝐵, |𝐹𝐺| = 1/4|𝐴𝐵|.  

Solution. Express 𝐹𝐺⃗⃗⃗⃗  ⃗ via sides of the pentagon, 

𝐹𝐺⃗⃗⃗⃗  ⃗ =
1

2
𝑁𝑀⃗⃗⃗⃗⃗⃗  ⃗ +

1

2
𝐸𝐴⃗⃗⃗⃗  ⃗ + 𝐴𝐵⃗⃗⃗⃗  ⃗ +

1

2
𝐵𝐶⃗⃗⃗⃗  ⃗ +

1

2
𝐿𝐾⃗⃗⃗⃗  ⃗,  

𝑁𝑀⃗⃗⃗⃗⃗⃗  ⃗ =
1

2
𝐶𝐷⃗⃗⃗⃗  ⃗ + 𝐷𝐸⃗⃗ ⃗⃗  ⃗ +

1

2
𝐸𝐴⃗⃗⃗⃗  ⃗,  

𝐿𝐾⃗⃗⃗⃗  ⃗ =
1

2
𝐵𝐶⃗⃗⃗⃗  ⃗ + 𝐶𝐷⃗⃗⃗⃗  ⃗ +

1

2
𝐷𝐸⃗⃗ ⃗⃗  ⃗.  

𝐹𝐺⃗⃗⃗⃗  ⃗ =
1

2
(
1

2
𝐶𝐷⃗⃗⃗⃗  ⃗ + 𝐷𝐸⃗⃗ ⃗⃗  ⃗ +

1

2
𝐸𝐴⃗⃗⃗⃗  ⃗) +

1

2
𝐸𝐴⃗⃗⃗⃗  ⃗ + 𝐴𝐵⃗⃗⃗⃗  ⃗ +

1

2
𝐵𝐶⃗⃗⃗⃗  ⃗ +

1

2
(
1

2
𝐵𝐶⃗⃗⃗⃗  ⃗ + 𝐶𝐷⃗⃗⃗⃗  ⃗ +

1

2
𝐷𝐸⃗⃗ ⃗⃗  ⃗), or, 

𝐹𝐺⃗⃗⃗⃗  ⃗ =
3

4
𝐵𝐶⃗⃗⃗⃗  ⃗ +

3

4
𝐶𝐷⃗⃗⃗⃗  ⃗ +

3

4
𝐷𝐸⃗⃗ ⃗⃗  ⃗ +

3

4
𝐸𝐴⃗⃗⃗⃗  ⃗ + 𝐴𝐵⃗⃗⃗⃗  ⃗ =

3

4
(𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝐵𝐶⃗⃗⃗⃗  ⃗ + 𝐶𝐷⃗⃗⃗⃗  ⃗ + 𝐷𝐸⃗⃗ ⃗⃗  ⃗ + 𝐸𝐴⃗⃗⃗⃗  ⃗) +

1

4
𝐴𝐵⃗⃗⃗⃗  ⃗ 

Or,  𝐹𝐺⃗⃗⃗⃗  ⃗ =
1

4
𝐴𝐵⃗⃗⃗⃗  ⃗, since 𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝐵𝐶⃗⃗⃗⃗  ⃗ + 𝐶𝐷⃗⃗⃗⃗  ⃗ + 𝐷𝐸⃗⃗ ⃗⃗  ⃗ + 𝐸𝐴⃗⃗⃗⃗  ⃗ = 0. 

Problem. Three equilateral triangles are erected 
externally on the sides of an arbitrary triangle 𝐴𝐵𝐶. 
Show that triangle 𝑂1𝑂2𝑂3 obtained by connecting the 
centers of these equilateral triangles is also an 
equilateral triangle (Napoleon’s triangle, see Figure). 

Solution. Denote |𝐴𝐵|  =  𝑐, |𝐵𝐶|  =  𝑎, |𝐴𝐶|  =  𝑏.  Let 

us find the side |𝑂2𝑂3|. Express  𝑂2𝑂3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐴𝑂3

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴𝑂2
⃗⃗ ⃗⃗ ⃗⃗  ⃗, or, 

𝑂2𝑂3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

1

2
𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝐶′𝑂3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −
1

2
𝐴𝐶⃗⃗⃗⃗  ⃗ − 𝐵′𝑂2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  
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Note, that |𝐵′𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| = 𝑏

√3

6
, and |𝐶′𝑂3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| = 𝑐
√3

6
. Also, (𝐴𝐵⃗⃗⃗⃗  ⃗ ∙ 𝐴𝐶⃗⃗⃗⃗  ⃗) = 𝑏𝑐 cos 𝛼, 

(𝐴𝐵⃗⃗⃗⃗  ⃗ ∙ 𝐵′𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) = (𝐴𝐶⃗⃗⃗⃗  ⃗ ∙ 𝐶′𝑂3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 𝑏𝑐
√3

6
cos(90˚ + 𝛼) = −

1

2√3
𝑏𝑐 sin 𝛼, and 

(𝐶′𝑂3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝐵′𝑂2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) =
1

12
𝑏𝑐 cos(180˚ − 𝛼) = −

1

12
𝑏𝑐 cos 𝛼, where 𝛼 = 𝐵𝐴�̂�. Then, 

|𝑂2𝑂3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

2
=

1

4
|𝐴𝐵⃗⃗⃗⃗  ⃗|

2
+ |𝐶′𝑂3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
2
+

1

4
|𝐴𝐶⃗⃗⃗⃗  ⃗|

2
+ |𝐵′𝑂2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
2
−

1

2
 (𝐴𝐵⃗⃗⃗⃗  ⃗ ∙ 𝐴𝐶⃗⃗⃗⃗  ⃗)  

−(𝐴𝐵⃗⃗⃗⃗  ⃗ ∙ 𝐵′𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) − (𝐴𝐶⃗⃗⃗⃗  ⃗ ∙ 𝐶′𝑂3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) − 2 (𝐶′𝑂3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝐵′𝑂2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), or, 

|𝑂2𝑂3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

2
=

1

4
(𝑐2 +

1

3
𝑐2 + 𝑏2 +

1

3
𝑏2 − 2𝑏𝑐 cos 𝛼 +

4

√3
𝑏𝑐 sin 𝛼 +

2

3
𝑏𝑐 cos 𝛼), 

|𝑂2𝑂3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

2
=

1

3
𝑐2 +

1

3
𝑏2 −

1

3
𝑏𝑐 cos 𝛼 +

1

√3
𝑏𝑐 sin 𝛼.  

Now, using the Law of cosines, 2𝑏𝑐 cos 𝛼 = 𝑏2 + 𝑐2 − 𝑎2, and the Law of sines, 

sin 𝛼 =
𝑎

2𝑅
, where R is the radius of the circumcircle, we obtain |𝑂2𝑂3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
2
=

1

6
𝑎2 +

1

6
𝑏2 +

1

6
𝑐2 +

𝑎𝑏𝑐

2√3𝑅
 . Obviously, the same expression holds for the sides 

|𝑂1𝑂3| and |𝑂1𝑂2|. Hence, triangle 𝑂1𝑂2𝑂3 is equilateral.  

Problem. Let 𝐴, 𝐵 and 𝐶 be angles of a triangle 𝐴𝐵𝐶.  

a. Prove that cos𝐴 + cos𝐵 + cos𝐶 ≤
3

2
.  

b. *Prove that for any three numbers, 𝑚,𝑛,𝑝, 
2𝑚𝑛cos𝐴 + 2𝑛𝑝cos𝐵 + 2𝑝𝑚cos𝐶 ≤ 𝑚2 +
𝑛2 + 𝑝2 

Solution. Let vectors �⃗⃗� , �⃗� , 𝑝  be parallel to 𝐴𝐶⃗⃗⃗⃗  ⃗, 𝐵𝐴⃗⃗⃗⃗  ⃗ and 

𝐶𝐵⃗⃗⃗⃗  ⃗, respectively, as in the Figure. Then,  

(�⃗⃗� + �⃗� + 𝑝 )2 = 𝑚2 + 𝑛2 + 𝑝2 − 2𝑚𝑛 cos𝐴 − 2𝑛𝑝 cos𝐵 − 2𝑚𝑝 cos 𝐶  

wherefrom immediately follows that,  

2𝑚𝑛cos𝐴 + 2𝑛𝑝cos𝐵 + 2𝑝𝑚cos𝐶 ≤ 𝑚2 + 𝑛2 + 𝑝2.  

The statement in part (a) follows from the above for 𝑚 = 𝑛 = 𝑝 = 1.  
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Problem. Point 𝐴’ divides the side 𝐵𝐶 of the triangle 𝐴𝐵𝐶 into two segments, 
𝐵𝐴′ and 𝐴′𝐶, whose lengths have the ratio |𝐵𝐴′|: |𝐴′𝐶|  =  𝑚: 𝑛. Express vector 

𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗   via vectors 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐴𝐶⃗⃗⃗⃗  ⃗. Find the length of the Cevian 𝐴𝐴’ if the sides of the 
triangle are |𝐴𝐵|  =  𝑐, |𝐵𝐶|  =  𝑎, and |𝐴𝐶|  =  𝑏.  

Solution. It is clear from the Figure, that 𝐵𝐴′⃗⃗⃗⃗⃗⃗  ⃗ =
𝑚

𝑛
𝐴′𝐶⃗⃗ ⃗⃗ ⃗⃗  =

𝑚

𝑚+𝑛
𝐵𝐶⃗⃗⃗⃗  ⃗, and 𝐶𝐴′⃗⃗ ⃗⃗ ⃗⃗  =

𝑛

𝑚+𝑛
𝐶𝐵⃗⃗⃗⃗  ⃗ =

𝑛

𝑚+𝑛
(𝐴𝐵⃗⃗⃗⃗  ⃗ − 𝐴𝐶⃗⃗⃗⃗  ⃗). Therefore,  

𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗  = 𝐴𝐶⃗⃗⃗⃗  ⃗ + 𝐶𝐴′⃗⃗ ⃗⃗ ⃗⃗  = 𝐴𝐶⃗⃗⃗⃗  ⃗ +
𝑛

𝑚+𝑛
(𝐴𝐵⃗⃗⃗⃗  ⃗ − 𝐴𝐶⃗⃗⃗⃗  ⃗) =

𝑛

𝑚+𝑛
𝐴𝐵⃗⃗⃗⃗  ⃗ +

𝑚

𝑚+𝑛
𝐴𝐶⃗⃗⃗⃗  ⃗.  

Or, we can obtain the same result as  

𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗  = 𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝐵𝐴′⃗⃗⃗⃗⃗⃗  ⃗ = 𝐴𝐵⃗⃗⃗⃗  ⃗ +
𝑚

𝑚+𝑛
(𝐴𝐶⃗⃗⃗⃗  ⃗ − 𝐴𝐵⃗⃗⃗⃗  ⃗) =

𝑛

𝑚+𝑛
𝐴𝐵⃗⃗⃗⃗  ⃗ +

𝑚

𝑚+𝑛
𝐴𝐶⃗⃗⃗⃗  ⃗.  

For the length of the segment 𝐴𝐴’ we have,  

|𝐴𝐴′|2 = 𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗  2 = (
𝑛

𝑚+𝑛
𝐴𝐵⃗⃗⃗⃗  ⃗ +

𝑚

𝑚+𝑛
𝐴𝐶⃗⃗⃗⃗  ⃗)

2
=

𝑛2𝑐2+𝑚2𝑏2+(𝑛𝑚)2𝑏𝑐 cos𝐵𝐴�̂�

(𝑚+𝑛)2
 . Using the 

Law of cosines, we write 2𝑏𝑐 cos𝐵𝐴�̂� = 𝑏2 + 𝑐2 − 𝑎2, and obtain the final 
result,  

|𝐴𝐴′|2 =
(𝑛2+𝑛𝑚)𝑐2+(𝑚2+𝑛𝑚)𝑏2−(𝑚𝑛)𝑎2

(𝑚+𝑛)2
=

𝑚𝑏2+𝑛𝑐2

𝑚+𝑛
−

𝑚𝑛𝑎2

(𝑚+𝑛)2
.  

Or, equivalently, (𝑚 + 𝑛)|𝐴𝐴′|2 = 𝑚𝑏2 + 𝑛𝑐2 −
𝑚𝑛𝑎2

𝑚+𝑛
.  

Substituting 𝑚 +  𝑛 =  𝑎, we obtain the Stewart’s theorem (Coxeter, Greitzer, 
exercise 4 on p. 6).  

If 𝐴𝐴’ is a median, then |𝐵𝐴′|: |𝐴′𝐶|  =  1: 1, i.e. 𝑚 =  𝑛 =  1, and we have, 

𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗  =
1

2
𝐴𝐵⃗⃗⃗⃗  ⃗ +

1

2
𝐴𝐶⃗⃗⃗⃗  ⃗, |𝐴𝐴′|2 =

1

2
𝑏2 +

1

2
𝑐2 −

1

4
𝑎2 (𝐴𝐴’ is a median).  

If 𝐴𝐴’ is a bisector, |𝐵𝐴′|: |𝐴′𝐶|  =  𝑐: 𝑏, i.e. 𝑚 =  𝑐, 𝑛 =  𝑏, and we obtain 

𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗  =
𝑏

𝑏+𝑐
𝐴𝐵⃗⃗⃗⃗  ⃗ +

𝑐

𝑏+𝑐
𝐴𝐶⃗⃗⃗⃗  ⃗, as well as |𝐴𝐴′|2 =

𝑏2𝑐+𝑐2𝑏

𝑏+𝑐
−

𝑏𝑐𝑎2

(𝑏+𝑐)2
= 𝑏𝑐 (1 −

𝑎2

(𝑏+𝑐)2
) 

(𝐴𝐴’ is a bisector).   
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Recap: Vector definition of the center of mass. 

Let us assume that a system of geometric points, 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 has masses 
𝑚1, 𝑚2, 𝑚3, … ,𝑚𝑛 associated with each point. The total mass of the system is 
𝑚 = 𝑚1 + 𝑚2 + 𝑚3 + ⋯+ 𝑚𝑛. By definition, the center of mass of such 
system is point M, such that  

𝑚1 ∙ 𝑀𝑋1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑚2 ∙ 𝑀𝑋2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑚3 ∙ 𝑀𝑋3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ⋯+ 𝑚𝑛 ∙ 𝑀𝑋𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0 

For the case of just two massive points, {𝑚1, 𝑋1} and {𝑚2, 𝑋2} this reduces to 

𝑚1 ∙ 𝑀𝑋1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −𝑚2 ∙ 𝑀𝑋2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , the Archimedes famous lever rule.  

Heuristic properties of the Center of Mass. 

1. Every system of finite number of point masses 
has unique center of mass (COM).  

2. For two point masses, 𝑚1 and 𝑚2, the COM 
belongs to the segment connecting these 
points; its position is determined by the 
Archimedes lever rule: the point’s mass times 
the distance from it to the COM is the same for 
both points, 𝑚1𝑑1 = 𝑚2𝑑2.  

3. The position of the system’s center of mass does 
not change if we move any subset of point 
masses in the system to the center of mass of 
this subset. In other words, we can replace any 
number of point masses with a single point 
mass, whose mass equals the sum of all these 
masses and which is positioned at their COM.  

Given the coordinate system with the origin O, we can specify position of any 

geometric point A by the vector, 𝑂𝐴⃗⃗⃗⃗  ⃗ connecting the origin O with this point. 
For the system of point masses, 𝑚1, 𝑚2, 𝑚3, … ,𝑚𝑛, located at geometric points 

𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛, position of a point mass 𝑚𝑖  is specified by the vector 𝑂𝑋𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

connecting the origin with point 𝑋𝑖  where the mass is located.  

It can be easily proven using the COM definition given above that the position 
of the COM of the system, M, is given by 



𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =
𝑚1∙𝑂𝑋1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +𝑚2∙𝑂𝑋2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +𝑚3∙𝑂𝑋3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +⋯+𝑚𝑛∙𝑂𝑋𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑚1+𝑚2+𝑚3+⋯+𝑚𝑛
, or, 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =
𝑚1 ∙ 𝑂𝑋1

⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑚2 ∙ 𝑂𝑋2
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ + 𝑚3 ∙ 𝑂𝑋3

⃗⃗ ⃗⃗⃗⃗ ⃗⃗ + ⋯+ 𝑚𝑛 ∙ 𝑂𝑋𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑚
 

An important property of the COM immediately follows from the above. If we 
add a point (𝑚𝑛+1, 𝑋𝑛+1) to the system, the resultant COM is the COM of the 
system of two points: the new point and the point (𝑚 , 𝑀) with mass 𝑚 placed 
at the COM of the first n points,  

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑛+1) =
𝑚 ∙ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝑚𝑛+1 ∙ 𝑂𝑋𝑛+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑚 + 𝑚𝑛+1
 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑛+1) =
𝑚1 ∙ 𝑂𝑋1

⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑚2 ∙ 𝑂𝑋2
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ + 𝑚3 ∙ 𝑂𝑋3

⃗⃗ ⃗⃗⃗⃗ ⃗⃗ + ⋯+ 𝑚𝑛 ∙ 𝑂𝑋𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +𝑚𝑛+1 ∙ 𝑂𝑋𝑛+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑚1 + 𝑚2 + 𝑚3 + ⋯+ 𝑚𝑛 + 𝑚𝑛+1
 

Problem. Prove that the medians of an arbitrary triangle ABC are concurrent 
(cross at the same point M).  

Problem. Prove that the altitudes of an 
arbitrary triangle ABC are concurrent (cross 
at the same point H).  

Problem. Prove that the bisectors of an 
arbitrary triangle ABC are concurrent (cross 
at the same point O).  

Problem. Prove Ceva’s theorem.  A

B

C
M

A’
C’

B’


