Classwork: Symmetries and Group Theory

May 2022

Definition. A group G is a set with a binary operation * such that,

(1) Closure: $\forall a, b \in G \Rightarrow a * b \in G$.

(2) Identity: $\exists e \in G$ such that $\forall a \in G, e * a = a * e = a$.

(3) Inverse: $\forall a \in G, \exists a^{-1} \in G \text{ such that } a * a^{-1} = a^{-1} * a = e.$

(4) Associativity: $\forall a, b, c \in G \Rightarrow (a * b) * c = a * (b * c).$

Definition. A group (G, *) is called Abelian if $\forall a, b \in G \Rightarrow a * b = b * a$.

Examples. (1) G is the set $\{0, 1\}$ with the binary operation * being addition modulo 2.

(2) (G, *) = (Z, +), the set of integers with addition.

(3) The set $S = \{0, 1, ..., n - 1\}$ is not a group with respect to multiplication modulo n since 0 has no inverse.

(4) The rotation and reflection symmetries of a regular *n*-polygon form a group, the Dihedral group D_n . It is non-abelian.

Definition. The order of the group is the number of its elements.

Examples. (1) The order of the group D_n is 2n, n rotations by angles $\frac{2\pi}{k}$, k = 0, ..., n-1 and n reflections.

(2) The order of the permutation group of n elements S_n is n!.

Definition. A cyclic group C_n is generated by powers of one element $a \in C_n$ $C_n = \{a^0, a^1, ..., a^{n-1}\}.$

Example. Rotational symmetries of the square $C_4 = \{R_0, R_{\frac{\pi}{2}}, R_{\pi}, R_{\frac{3\pi}{2}}\}$.

Definition. A subgroup H of a group (G, *) is a subset $H \subset G$ that forms a group with respect to the same binary operation *.

Example. Rotations form a subgroup of the Dihedral group. Reflections do not form a subgroup since the composition of two different reflections results in a rotation.

Definition. Given two groups (G, *) and (H, \bullet) , a group isomorphism is a bijection $f: G \to H$ such that $f(a * b) = f(a) \bullet f(b)$.

Examples. (1) The symmetry group D_3 of the equilateral triangle is isomorphic to the permutation group of three elements S_3

(2) The symmetry group D_4 of the square *is not* isomorphic to the permutation group of four elements S_4 .