Classwork: Symmetries and Group Theory

May 2022

Definition. A group G is a set with a binary operation $*$ such that,
(1) Closure: $\forall a, b \in G \Rightarrow a * b \in G$.
(2) Identity: $\exists e \in G$ such that $\forall a \in G, e * a=a * e=a$.
(3) Inverse: $\forall a \in G, \exists a^{-1} \in G$ such that $a * a^{-1}=a^{-1} * a=e$.
(4) Associativity: $\forall a, b, c \in G \Rightarrow(a * b) * c=a *(b * c)$.

Definition. A group $(G, *)$ is called Abelian if $\forall a, b \in G \Rightarrow a * b=b * a$.
Examples. (1) G is the set $\{0,1\}$ with the binary operation $*$ being addition modulo 2 .
(2) $(G, *)=(Z,+)$, the set of integers with addition.
(3) The set $S=\{0,1, \ldots, n-1\}$ is not a group with respect to multiplication modulo n since 0 has no inverse.
(4) The rotation and reflection symmetries of a regular n-polygon form a group, the Dihedral group D_{n}. It is non-abelian.

Definition. The order of the group is the number of its elements.
Examples. (1) The order of the group D_{n} is $2 n, n$ rotations by angles $\frac{2 \pi}{k}, k=$ $0, \ldots, n-1$ and n reflections.
(2) The order of the permutation group of n elements S_{n} is n !.

Definition. A cyclic group C_{n} is generated by powers of one element $a \in C_{n}$ $C_{n}=\left\{a^{0}, a^{1}, \ldots, a^{n-1}\right\}$.
Example. Rotational symmetries of the square $C_{4}=\left\{R_{0}, R_{\frac{\pi}{2}}, R_{\pi}, R_{\frac{3 \pi}{2}}\right\}$.
Definition. A subgroup H of a group $(G, *)$ is a subset $H \subset G$ that forms a group with respect to the same binary operation $*$.
Example. Rotations form a subgroup of the Dihedral group. Reflections do not form a subgroup since the composition of two different reflections results in a rotation.
Definition. Given two groups $(G, *)$ and (H, \bullet), a group isomorphism is a bijection $f: G \rightarrow H$ such that $f(a * b)=f(a) \bullet f(b)$.

Examples. (1) The symmetry group D_{3} of the equilateral triangle is isomorphic to the permutation group of three elements S_{3}
(2) The symmetry group D_{4} of the square is not isomorphic to the permutation group of four elements S_{4}.

