MATH 9

ASSIGNMENT 2: CENTER OF MASS

OCT 3, 2021

Center of mass

Let A_{1}, \ldots, A_{n} be a collection of points and m_{1}, \ldots, m_{n} - some real numbers, representing masses placed at these points. Then the center of mass of such a collection of masses is defined to be a point M such that

$$
\overrightarrow{O M}=\frac{m_{1} \overrightarrow{O A}_{1}+\cdots+m_{n} \overrightarrow{O A}_{n}}{m_{1}+\cdots+m_{n}}
$$

where O is the origin.

Problems

1. (a) Let M be a point on the segment $A_{1} A_{2}$ which divides this segment in proportion $M A_{1}: M A_{2}=$ $5: 7$. Show that then, M is the same as the center of mass of the system consisting of mass $m_{1}=7$ at point A_{1} and mass $m_{2}=5$ at point A_{2}. [Hint: compare with problem 2 from previous homework.]
(b) Show that the center of mass of system of two points A_{1}, A_{2} with masses m_{1}, m_{2} is the point on the segment $A_{1} A_{2}$, which divides this segment in proportion $M A_{1}: M A_{2}=m_{2}: m_{1}$. In particular, if $m_{1}=m_{2}$, then this point is the midpoint of $A_{1} A_{2}$.
2. Show that if M is the center of mass of points A_{1}, \ldots, A_{n}, then for any point X (not only for the origin), we have

$$
\overrightarrow{X M}=\frac{m_{1} \overrightarrow{X A}_{1}+\cdots+m_{n} \overrightarrow{X A}_{n}}{m_{1}+\cdots+m_{n}}
$$

(hint: $\overrightarrow{X M}=\overrightarrow{X O}+\overrightarrow{O M}$).
3. Show that the center of mass of some collection of points doesn't change if we replace two points A_{1}, A_{2} with masses m_{1}, m_{2} by a single mass $m_{1}+m_{2}$ placed at the center of mass of A_{1}, A_{2}.
4. Let M be the center of mass of a system of 3 points A, B, C with equal masses. Show that then M lies on the median $A A_{1}$, dividing it in proportion 2:1. Deduce from this that in fact, all three medians of a triangle pass through M (and thus intersect at a single point).
5. On each side of a parallelogram $A B C D$, mark a point which divides it in the proportion 2:1 (going clockwise). Prove that the marked points themselves form a parallelogram.
[Hint: denote $\overrightarrow{A B}=\vec{v}, \overrightarrow{A D}=\vec{w}$, and write vectors $\overrightarrow{A A}_{1}, \overrightarrow{A B}_{1}, \overrightarrow{A D}_{1}, \ldots$ as combinations of \vec{v}, \vec{w}]
6. (a) In a triangle $A B C$, let point M_{1} be on the side $B C$ dividing it so that $M_{1} B: M_{1} C=2: 3$, and M_{2}, M_{3} on sides $A C, A B$ respectively so that

$$
\begin{aligned}
& M_{2} A: M_{2} C=2: 5 \\
& M_{3} A: M_{3} B=3: 5
\end{aligned}
$$

Prove that lines $A M_{1}, B M_{2}, C M_{3}$ intersect at a single point. [Hint: place appropriate masses at points $A, B, C]$
(b) Prove Ceva theorem: if points M_{1}, M_{2}, M_{3} are on the sides $B C, A C, A B$ respectively of triangle $A B C$, then lines $A M_{1}, B M_{2}, C M_{3}$ intersect at a single point if and only if

$$
\frac{C M_{1}}{B M_{1}} \cdot \frac{B M_{3}}{A M_{3}} \cdot \frac{A M_{2}}{C M_{2}}=1
$$

[Hint: place appropriate masses at points A, B, C]

