MATH 9

ASSIGNMENT 3: CEVA THEOREM AND MORE
OCT 17, 2021

Ceva theorem

Theorem. Let points A_{1}, B_{1}, C_{1} be on the sides $B C, A C, A B$ respectively of triangle $A B C$. Then lines $A A_{1}, B B_{1}, C C_{1}$ intersect at a single point if and only if

$$
\frac{C A_{1}}{B A_{1}} \cdot \frac{B C_{1}}{A C_{1}} \cdot \frac{A B_{1}}{C B_{1}}=1
$$

Problems

1. Let $A B C D$ be a convex quadrilateral, and let points K, L, M, N be midpoints of sides $A B, B C$, $C D$, and $D A$ respectively. Let O be the intersection point of segments $K M$ and $L N$. Prove that O is the midpoint of each of them.
2. Let $A A_{1}$ be the bisector of angle A in triangle $A B C$. Show that then, A_{1} divides side $B C$ in the proportion equal to ratio of sides $c=A B, b=A C$:

$$
\left|B A_{1}\right|:\left|C A_{1}\right|=c: b
$$

[Hint: drop perpendiculars $B B_{1}, C C_{1}$ from vertices B, C to line $A A_{1}$. Use similar triangles to show that $\left.B B_{1}: C C_{1}=c: b.\right]$
3. Use previous problem and Ceva theorem to give another proof of the fact that the three angle bisectors of a triangle intersect at a single point.
*4. Show that the intersection point of the three angle bisectors in a triangle is the center of mass of the three sides (not vertices!) of the triangle, if we think of each side as a thin rod, with uniform density, so that the mass of a rod is proportional to its length.
5. Let A, B be distinct points. Show that then a point M lies on line $A B$ if and only if one can write

$$
\overrightarrow{O M}=t \overrightarrow{O A}+(1-t) \overrightarrow{O B}
$$

fro some real t.
In particular, M lies on segment $A B$ if and only if it can be written in the form above with $0 \leq t \leq 1$.
[Hint: write $\overrightarrow{O M}$ as combination of $\overrightarrow{O A}$ and $\overrightarrow{A B}$.]
6. Points A, B are moving along sides of an angle $X O Y$ so that the quantity

$$
\frac{p}{O A}+\frac{q}{O B}
$$

stays constant. [Here p, q are some fixed positive real numbers.]
Prove that then there is a point M inside this angle such that for all such positions of A, B, the line $A B$ goes through M.
7. Let R be the operation of rotation by angle 60° : for any vector $\vec{v}, R \vec{v}$ is a vector of same length as \vec{v} but rotated 60 degrees counterclockwise.
(a) Show that $R(c \vec{v})=c R(\vec{v}), R(\vec{v}+\vec{w})=R(\vec{v})+R(\vec{w})$.
(b) Given a triangle $A B C$, build on the outside of side $A B$ an equilateral triangle. Denote by C_{1} the center of this triangle.
Write vector $\overrightarrow{O C}_{1}$ as combination of $\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O C}$ and operation R.
*(c) Repeat the same operation with two other sides of triangle $A B C$, building equilateral triangles on sides $B C, A C$. Show that the centers of the three constructed triangles themselves form an equilateral triangle.
[Hint: it suffices to show that $R\left({\overrightarrow{A_{1} B}}_{1}\right)=\overrightarrow{B_{1} C_{1}}$.]

