MATH 9 ASSIGNMENT 5: MATHEMATICAL INDUCTION

October 31, 2021

The Principle of Mathematical Induction is an extremely famous and useful mathematical argument, first formalized by mathematician Peano, in what was also the first formalization of modern logic. It's the idea that if you start at 0 and keep hopping upwards by +1 , that eventually you will reach any natural number. Formally, it is as follows:

Let $P(n)$ be a statement which depends on a natural number n (natural numbers are nonnegative integers). Suppose that we know the following:

- $P(0)$ is true
- For every n, the statement $(P(n) \Longrightarrow P(n+1))$ is true.

Then $P(n)$ is true for all n.
Proving that $P(0)$ is true is called the base case.
Proving the implication $P(n) \Longrightarrow P(n+1)$ is called the inductive step. It is important to understand that it is the implication itself you are proving, not either of the statements $P(n)$ or $P(n+1)$. In other words, you are proving that if $P(n)$ is true, then $P(n+1)$ is also true.

A variation of the principle of mathematical induction is when instead of taking the base case to be $n=0$, you take the base case $n=1$ (or some other number n_{0}); in this case, mathematical induction establishes that the statement is true for all $n \geq n_{0}$.

Homework

1. Use mathematical induction to prove the following formulas
(a) $1+2+3+\ldots n=\frac{n(n+1)}{2}$
(b) $1+3+5+\ldots(2 n-1)=n^{2}$
(c) $1+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
2. Guess a formula for the product

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)
$$

and prove it using induction. [Hint: try computing the answer for $n=2,3,4,5$ and writing it as a fraction with denominator $2 n$; see if you can guess the pattern.]
3. Guess a formula for the product

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)
$$

and prove it using induction. [Hint: try computing the answer for $n=2,3,4,5$ and writing it as a fraction with denominator $2 n$; see if you can guess the pattern.]
4. Use mathematical induction to prove that for any real $x>-1$ and integer $n \geq 1$, we have

$$
(1+x)^{n}>1+n x
$$

5. Let the numbers $\binom{n}{k}$ be defined for all $n \geq 0$ and arbitrary integer k by the following rules:

For $n=0$:

$$
\binom{0}{0}=1, \quad\binom{0}{k}=0 \quad \text { for all } k \neq 0
$$

For positive n :

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

(Of course, you recognize that these are the rules of Pascal triangle.)

Prove that then, for all $k \in \mathbb{Z}$ and $n \geq 0$ we have

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

6. Can you explain what is wrong with this argument?

Claim: in any group of $n \geq 1$ horses, all of them have the same color.
Proof: by induction in n
Base case: $n=1$ is obvious.
Induction step: If we have a group of $n+1$ horses, choose two subgroups: one consisting of horses $1,2, \ldots, n$; the other, horses $2,3, \ldots, n+1$. By induction assumption, in each subgroup horses have the same color. On the other hand, these two subgroups have horses in common; thus, all $n+1$ horses have the same color.

Conclusion: all horses existing in the world have the same color.

