MATH 9 ASSIGNMENT 9: INTERPOLATION POLYNOMIALS

DEC 5, 2021

Reminder

Definition. A number a is called a multiple root of a polynomial f(x), with multiplicity m, if f(x) is divisible by $(x-a)^m$ and not divisible by $(x-a)^{m+1}$.

Roots of multiplicity one are also called simple roots; of multiplicity two, double roots.

For example, polynomial $(x-1)^2(x-5)$ has a simple root x=5 and double root x=1.

Theorem. If x_1, \ldots, x_n are roots of polynomial f(x), listed with multiplicities, then f(x) is divisible by $(x - x_1) \ldots (x - x_n)$.

This also implies the following result.

Theorem. A non-zero polynomial of degree n can not have more than n roots (counting with multiplicities, *i.e.* counting each root as many times as is its multiplicity).

INTERPOLATION POLYNOMIALS

Suppose you are given a function f(x) about which you do not know much, but you do know its value at several points: $f(x_1) = y_1, \ldots, f(x_n) = y_n$. It is frequently needed to "approximate" f, i.e. find a nice function (say, a polynomial) which has the same values at these points. Here is one way to do it.

Theorem. Given n distinct points on the real line x_1, \ldots, x_n and n (arbitrary) numbers y_1, \ldots, y_n , there is exactly one polynomial of degree n-1 such that

$$f(x_1) = y_1, \dots, f(x_n) = y_n$$

Proof. Uniqueness. If f_1, f_2 are two such polynomials, then $f_1 - f_2$ will have zeros at x_1, \ldots, x_n . Since $f_1 - f_2$ has degree at most n - 1, this implies $f_1 - f_2 = 0$.

Existence. Idea: let us write f as a sum $y_1f_1 + \cdots + y_nf_n$, where each f_i is equal to 1 at x_i and zero at all other x_j . Clearly, so constructed f will satisfy the requirement:

$$f(x_i) = y_1 f_1(x_i) + \dots + y_n f_n(x_i) = y_i f_i(x_i) = y_i$$

How does one construct polynomials f_i ? For example, how do we construct f_1 ?

Note that $g_1 = (x - x_2) \dots (x - x_n)$ has the property $g(x_j) = 0$ for all $j = 2, \dots, n$ — so it meets parts of the requirement. But $g(x_1) = (x_1 - x_2) \dots (x_1 - x_n) \neq 1$. So let us take

$$f_1(x) = \frac{g_1(x)}{g_1(x_1)} = \frac{(x - x_2)\dots(x - x_n)}{(x_1 - x_2)\dots(x_1 - x_n)}$$

(note that the denominator is a number, not a polynomial). Then

$$f_1(x_1) = 1$$
, $f_1(x_j) = 0$ for $j \neq 1$

In a similar way we construct all other f_i (exercise!) so that

$$f_i(x_i) = 1, \quad f_i(x_j) = 0 \quad \text{for } j \neq i$$

and then write $f(x) = y_1 f_1(x) + \cdots + y_n f_n(x)$.

Problems

- 1. (a) Find a quadratic polynomial f(x) such that f(-1) = 7, f(1) = 5, f(2) = 10.
 - (b) We know that a certain function has these values: f(-1) = 2, f(0) = 1, f(2) = 5, f(3) = 22. Try approximating it by a polynomial of degree 3. What would you expect as the value of f at x = 1?
- **2.** Simplify

$$\frac{(x-a)(x-b)}{(c-a)(c-b)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-a)(x-c)}{(b-a)(b-c)}$$

Can you do it without long computations?

3. A ship is sailing in a straight line with constant speed. Every hour, the captain measures the distance to a lighthouse on a small island which lies some distance off their path.

At noon, the distance was 7 km; at 2 pm, it was 5 km; at 3pm, it was 11 km.

What was the distance at 1 pm? What is the ship's speed?

[Hint: it might be easier to work with the square of the distance than with the distance itself.]

4. A polynomial f(x), when divided by (x - a), (x - b), and (x - c) gives remainders A, B, and C respectively. What is the remainder when f(x) is divided by (x - a)(x - b)(x - c)?

[Hint: the remainder is a quadratic polynomial, so we can determine it uniquely if we know its values at 3 points.]

- 5. It is known that one of the roots of the polynomial $x^3 6x^2 + ax 6$ is x = 3. Can you find all other roots?
- **6.** Numbers x_1, x_2, x_3 satisfy the following system of equations:

$$x_1 + x_2 + x_3 = 7$$
$$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = \frac{1}{7}$$

Prove that one of these 3 numbers must be equal to 7.

[Hint: use Vieta formulas.]