MATH 9: ASSIGNMENT 13

JANUARY 16, 2022

Geometry of complex numbers

Any complex number can be written in the form $z=a+b i$, with real a, b. The number a is called real part of z and denoted $a=\operatorname{Re} z$; the number b is called imaginary part of z and denoted $b=\operatorname{Im} z$.

We can represent a complex number $z=a+b i$ by a point on the plane, with coordinates (a, b). Thus, we can identify

$$
\text { complex numbers }=\text { pairs }(a, b) \text { of real numbers }=\text { vectors in a plane }
$$

In this language, many of the operations with complex numbers have a natural geometric meaning:

- Addition of complex numbers corresponds to addition of vectors.
- The magnitude (also called absolute value) $|z|=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$ is just the distance from the corresponding point to the origin, or the length of the corresponding vector. More generally, distance between two points z, w is $|z-w|$.
- Complex conjugation $z \mapsto \bar{z}$ is just the reflection around x-axis.

The trickiest one is the multiplication. One particular case is easy: for a non-negative real number r, operation of multiplication by r is just the usual operation of multiplication of a vector by a real number: vector $r z$ has the same direction as z but its length is multiplied by r. This operation is usually called dilation.

Magnitude and argument

The magnitude of a complex numbers $z=a+b i$ is $|z|=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}} ;$ geometrically it is the length of vector $z=(a, b)$. If $z \neq 0$, its argument $\arg z$ is defined to be the angle between the positive part of x-axis and the vector z measured counterclockwise. Thus, instead of describing a complex number by its coordinates $a=\operatorname{Re}(z), b=\operatorname{Im}(z)$ we can describe it by its magnitude $r=|z|$ and $\operatorname{argument} \varphi=\arg (z)$:

Relation between r, φ and $a=\operatorname{Re}(z), b=\operatorname{Im}(z)$ is given by

$$
\begin{aligned}
& a=r \cos (\varphi), \quad b=r \sin (\varphi) \\
& z=a+b i=r(\cos (\varphi)+i \sin (\varphi))
\end{aligned}
$$

Geometric meaning of multiplication

Theorem.

1. If z is a complex number with magnitude 1 and argument φ, then multiplication by z is rotation by angle φ :

$$
z \cdot w=R_{\varphi}(w)
$$

where R_{φ} is operation of counterclockwise rotation by angle φ around the origin.
2. If z is a complex number with absolute value r and argument φ, then multiplication by z is rotation by angle φ and rescaling by factor r :

$$
z \cdot w=r R_{\varphi}(w)
$$

Homework

Throughout this assignment, we make no distinction between a point with coordinates (x, y) and a vector connecting origin $(0,0)$ to this point.

1. Show that the operation $z \mapsto \bar{z}$ is reflection around the x axis.
2. Find the absolute value and argument of the following numbers:
$1+i$
$-i$
$w=\frac{\sqrt{3}}{2}+\frac{i}{2}$ (hint: show that the points $0, w, \bar{w}$ form a regular triangle)
3. Find a complex number which has argument $\pi / 4=45^{\circ}$ and absolute value 2 .
4. Draw the following sets of points in \mathbb{C} :
(a) $\{z \mid \operatorname{Re} z=1\}$
(b) $\{z||z|=1\}$
(c) $\{z \mid \arg z=3 \pi / 4\}$ (if you are not familiar with measuring angles in radians, replace $3 \pi / 4$ by 135°).
(d) $\left\{z \mid \operatorname{Re}\left(z^{2}\right)=0\right\}$
(e) $\{w||w-1|=1\}$
(f) $\left\{w\left|\left|w^{2}\right|=2\right\}\right.$
(g) $\{z \mid z+\bar{z}=0\}$
5. Show that
(a) $|\bar{z}|=|z|, \arg (\bar{z})=-\arg (z)$
(b) Show that $\frac{\bar{z}}{z}$ has magnitude one. What is its argument if argument of z is φ ?
(c) Check part (b) for $z=1+i$ by explicit calculation.
6. Let $p(x)$ be a polynomial with real coefficients.
(a) Show that for any complex z, we have $\overline{p(z)}=p(\bar{z})$.
(b) Show that if z is a complex root of p, i.e. $p(z)=0$, then \bar{z} is also a root.
(c) Show that if $p(z)$ has odd degree and completely factors over \mathbb{C} (i.e. has as many roots as is its degree), then it must have at least one real root.
7. If z has magnitude 2 and argument $3 \pi / 2$, and w has absolute value 3 and argument $\pi / 3$, what will be the absolute value and argument of $z w$? Can you write it in the form $a+b i$?
8. Let z be a complex number with magnitude 1 and argument $\pi / 3$. Can you find z^{3} ? z^{6} ? z^{2021} ?

Try doing it using as few calculations as possible.

