MATH 9: ASSIGNMENT 14

JANUARY 23, 2022

TRIGONOMETRIC FORM OF COMPLEX NUMBER

As discussed, any complex number can be described either by specifying its real and complex parts a and b, or by specifying its magnitude r and argument φ (the angle with the real axis, see picture). The relation is given by

$$z = a + bi = r(\cos \varphi + i \sin \varphi), \qquad r = |z|, \ \varphi = \arg z$$
$$a = \operatorname{Re}(z) = r \cos \varphi, \qquad b = \operatorname{Im}(z) = r \sin \varphi$$
$$r = |z| = \sqrt{a^2 + b^2}$$

Writing a complex number as $z = r(\cos \varphi + i \sin \varphi)$ is called the **trigonometric**, or **polar**, form of a complex number.

GEOMETRIC MEANING OF MULTIPLICATION

Theorem. If z is a complex number with magnitude r and argument φ , then multiplication by z is rotation by angle φ and dilation (rescaling) by factor r:

$$z \cdot w = rR_{\varphi}(w)$$

Addition of argument

Theorem. When we multiply two complex numbers, magnitudes multiply and arguments add:

$$|z_1 z_2| = |z_1| \cdot |z_2|, \quad \arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \mod 360^\circ$$

Similarly,

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}, \quad \arg(\frac{z_1}{z_2}) = \arg(z_1) - \arg(z_2) \mod 360^\circ$$

Homework

1. Which transformations of the complex plane are given by the formulas

(a)
$$z \to iz$$
 (b) $z \to (1 + i\sqrt{3})z$ (c) $z \to \frac{z}{1+i}$
(d) $z \to \frac{z + \overline{z}}{2}$ (e) $z \to (1 - 2i + z)$ (f) $z \to \frac{z}{|z|}$
(g) $z \to i\overline{z}$ (h) $z \to -\overline{z}$

Draw the image of the square $0 \le \text{Re } z \le 1$, $0 \le \text{Im } z \le 1$ under each of these transformations.

- 2. Consider the equation $x^3 4x^2 + 6x 4 = 0$.
 - (a) Solve this equation (hint: one of the roots is an integer).
 - (b) Find the sum and product of the roots in two ways: by using Vieta formulas and by explicit computation. Check that the results match.
- **3.** Using the argument addition rule, derive a formula for $\cos(\varphi_1 + \varphi_2)$, $\sin(\varphi_1 + \varphi_2)$ in terms of sin and \cos of φ_1, φ_2 . [Hint: let $z_1 = \cos \varphi_1 + i \sin \varphi_1, z_2 = \cos \varphi_2 + i \sin \varphi_2$; then $z_1 z_2 = ?$]
- 4. (a) Let z be a complex number with magnitude 2 and argument 30° : $z = 2(\cos(30^{\circ}) + i\sin(30^{\circ}))$. Find the magnitude and argument of z^2 ; of z^3 ; of z^{2022} .
 - (b) Prove de Moivre's formula: if $z = r(\cos \varphi + i \sin \varphi)$, then

$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$$

5. Compute

$$(3+4i)^{-1},$$
 $(1-i)^{12},$ $(1-i)^{-12},$ $\left(\frac{1+i}{1-i}\right)^{2006},$ $(i\sqrt{3}-1)^{17}$

- **6.** Using de Moivre's formula, write a formula for $\cos(3\varphi)$, $\sin(3\varphi)$ in terms of $\sin\varphi$, $\cos\varphi$.
- 7. Show that for any $n \ge 1$, $\cos(n\varphi)$ is a polynomial of $\cos \varphi$: there exists a polynomial $T_n(x)$ such that $\cos(n\varphi) = T_n(\cos(\varphi))$.

(These polynomials are called Chebyshev (or Tchebysheff) polynomials.)

*8. Compute $1 + \cos \varphi + \cos 2\varphi + \cdots + \cos n\varphi$. [Hint: if $z = \cos \varphi + i \sin \varphi$, what is $1 + z + z^2 + \cdots + z^n$?]