MATH 9: ASSIGNMENT 15

JAN 30, 2022

n-TH ROOT

Recall that when we multiply two complex numbers, magnitudes multiply and arguments add:

$$
\begin{aligned}
z_{1} & =r_{1}\left(\cos \left(\varphi_{1}\right)+i \sin \left(\varphi_{1}\right)\right) \\
z_{2} & =r_{1}\left(\cos \left(\varphi_{1}\right)+i \sin \left(\varphi_{2}\right)\right) \\
z_{1} z_{2} & =r_{1} r_{2}\left(\cos \left(\varphi_{1}+\varphi_{2}\right)+i \sin \left(\varphi_{1}+\varphi_{2}\right)\right)
\end{aligned}
$$

In particular, we had de Moivre's formula: if $z=r(\cos \varphi+i \sin \varphi)$, then

$$
z^{n}=r^{n}(\cos (n \varphi)+i \sin (n \varphi))
$$

This also allows us to compute n-th order roots. Suppose we want to solve equation

$$
z^{n}=w
$$

where w is a given complex number with magnitude r and argument φ. Then we must have $|z|^{n}=|w|=r$, $n \arg z=\arg w=\varphi$, so one obvious solution is $z=\sqrt[n]{r}(\cos (\varphi / n)+i \sin (\varphi / n))$.

However, there are more solutions. Remember that arg only makes sense as a number modulo 360° (or 2π radians), so taking argument of z to be $\varphi / n+360^{\circ} / n$ also works; more generally, we have solutions

$$
\begin{equation*}
z=\sqrt[n]{r}\left(\cos \left(\frac{\varphi+k 360^{\circ}}{n}\right)+i \sin \left(\frac{\varphi+k 360^{\circ}}{n}\right)\right), \quad k=0,1, \ldots n-1 \tag{1}
\end{equation*}
$$

Altogether, this gives n solutions. This is a special case of the following extremely important result, called the Fundamental Theorem of Algebra.

Theorem. Any polynomial with complex coefficients of degree n has exactly n roots (counting with multiplicities).

There is no simple proof of this theorem (and, in fact, no purely algebraic proof: all the known proofs use some geometric arguments).

In particular, since any polynomial with real coefficients can be considered as a special case of a polynomial with complex coefficients, this shows that any real polynomial of degree n has exactly n complex roots.

Homework

1. Compute the following:
(a) $\frac{2+17 i}{4-i}$
(b) $(-1+i \sqrt{3})^{2014}$
(c) $(1-i)^{-5}$
2. Solve the following equations in complex numbers. You can leave the answers in the form using sin and \cos
(a) $z^{2}=1+i$
(b) $z^{2}+2 z+2=0$
(c) $z^{3}=1$
(d) $z^{2}=1+i \sqrt{3}$
(e) $z^{4}=-2$
3. On the complex plane, plot all fifth order roots of 1 and all fifth order roots of -1 .
4. What is the sum of all (complex) n-th roots of 1 ?
5. (a) Find all roots of the polynomial $1+z+z^{2}+\cdots+z^{n}$ (Hint: remember geometric progression?)
(b) Without doing the long division, show that $1+x+x^{2}+\cdots+x^{9}$ is divisible by $1+x+\cdots+x^{4}$. (Hint: find the roots of each of them.)
6. Find two complex numbers satisfying $z_{1}+z_{2}=2, z_{1} z_{2}=5$. [Hint: they are roots of a certain quadratic polynomial.]
*7. (a) Let $f(z)$ be a polynomial with real coefficients, and $a \in \mathbb{C}-$ a complex root of f. Assume that $a \notin \mathbb{R}$. Show that $g(z)=(z-a)(z-\bar{a})$ is a polynomial with real coefficients, and that $f(z)$ is divisible by $g(z)$.
(b) Using fundamental theorem of algebra, show that any polynomial with real coefficients can be written as a product of polynomials with real coefficients of degree at most 2 .
(c) Write the polynomial $x^{6}-1$ as a product of polynomials with real coefficients of degree at most 2.
