Reminder: sets

Here is a brief reminder of set theory notations:

- \varnothing : empty set
- $x \in A$ (reads x is in A): x is an element of set A
- $\{x \mid$ some condition on $x\}$: set-builder notation: set of all x satisfying some condition
- $A \subset B$: set A is a subset of B. Note that this includes possibility that $A=B$.
- $A \cup B=\{x \mid x \in A$ or $x \in B\}$: union of two sets
- $A \cap B=\{x \mid x \in A$ and $x \in B\}$: intersection of two sets
- $\bar{A}=\{x \mid x \notin A\}$: complement of A (only makes sense if we specify what kind of values x is allowed to take).

Functions

A function $f: A \rightarrow B$ is some rule assigning to every element $x \in A$ an element $f(x) \in B$. Set A is called domain of f and set B, the codomain.

Note that we do not require that every element $y \in B$ appears as a value of our function; the set of values $\{y \in B \mid y=f(x)$ for some $x \in A\}$ is denoted $f(A)$ and called range of f. More generally, for every subset $X \subset A$ we denote

$$
f(X)=\{y \in B \mid y=f(x) \text { for some } x \in X\}
$$

and call it the image of X.
Preimage: for a function $f: A \rightarrow B$, and any subset $C \subset B$, we denote

$$
f^{-1}(C)=\{x \in A \mid f(x) \in C\}
$$

and call it the preimage of C.
In particular, we can take $C=\{y\}$ to be a single point in B; in this case, $f^{-1}(\{y\})$ is the set of all solutions of the equation

$$
f(x)=y
$$

1. Find the following images
(a) $f([0,1])$, where $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=3 x+1$.
(b) $f([-1,2])$, where $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=|x|-1$.
2. For each of the following functions, find $f([0,3]), f^{-1}([0,3])$.
(a) $f_{1}: \mathbb{R} \rightarrow \mathbb{R}, f_{1}(x)=x^{3}+1$.
(b) $f_{2}: \mathbb{R} \rightarrow \mathbb{R}, f_{2}(x)=x^{2}-2 x$.
(c) $f_{3}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, f_{3}(x)=\sqrt{x}$ (here $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}$).
3. For two sets A, B, define their difference $A-B$ by $A-B=\{x \mid x \in A, x \notin B\}=A \cap \bar{B}$ (some books also use notation $A \backslash B$ instead of $A-B$).
(a) Prove that $A-(B \cup C)=(A-B)-C$, but that in general, $A-(B-C) \neq(A \cup C)-B$ (draw Venn diagrams to help you).
(b) Define symmetric difference $A \triangle B=(A-B) \cup(B-A)$. Prove that this operation is commutative and associative: $A \triangle B=B \triangle A,(A \triangle B) \triangle C=A \triangle(B \triangle C)$.
4. Let $f: A \rightarrow B$. Prove that for any two subsets $Y_{1}, Y_{2} \subset B$, we have $f^{-1}\left(Y_{1} \cap Y_{2}\right)=f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$.
[Hint: $x \in f^{-1}\left(Y_{1} \cap Y_{2}\right) \Longleftrightarrow f(x) \in Y_{1} \cap Y_{2}$. Now, we need to show that this condition is equivalent to $\left.x \in f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)\right]$
5. Let $f: A \rightarrow B$, and X_{1}, X_{2} are subsets in A.
(a) Prove that $f\left(X_{1} \cup X_{2}\right)=f\left(X_{1}\right) \cup f\left(X_{2}\right)$.
(b) Show that it could happen that $f\left(X_{1} \cap X_{2}\right) \neq f\left(X_{1}\right) \cap f\left(X_{2}\right)$ (hint: take X_{i} so that they do not intersect).
6. (a) Find all (complex) roots of polynomial $x^{4}+1$.
(b) Find all real values of p and q for which the polynomial $x^{4}+1$ is divisible by $x^{2}+p x+q$.
