MATH 9 ASSIGNMENT 16: FUNCTIONS, IMAGES, AND PREIMAGES.

FEB 6, 2022

Reminder: sets

Here is a brief reminder of set theory notations:

- \emptyset : empty set
- $x \in A$ (reads x is in A): x is an element of set A
- $\{x \mid \text{some condition on } x\}$: set-builder notation: set of all x satisfying some condition
- $A \subset B$: set A is a subset of B. Note that this includes possibility that A = B.
- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$: union of two sets
- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$: intersection of two sets
- $\overline{A} = \{x \mid x \notin A\}$: complement of A (only makes sense if we specify what kind of values x is allowed to take).

FUNCTIONS

A function $f: A \to B$ is some rule assigning to every element $x \in A$ an element $f(x) \in B$. Set A is called domain of f and set B, the codomain.

Note that we do not require that every element $y \in B$ appears as a value of our function; the set of values $\{y \in B \mid y = f(x) \text{ for some } x \in A\}$ is denoted f(A) and called **range** of f. More generally, for every subset $X \subset A$ we denote

$$f(X) = \{ y \in B \mid y = f(x) \text{ for some } x \in X \}$$

and call it the **image** of X.

Preimage: for a function $f: A \to B$, and any subset $C \subset B$, we denote

$$f^{-1}(C) = \{ x \in A \mid f(x) \in C \},\$$

and call it the **preimage** of C.

In particular, we can take $C = \{y\}$ to be a single point in B; in this case, $f^{-1}(\{y\})$ is the set of all solutions of the equation

$$f(x) = y$$

- **1.** Find the following images
 - (a) f([0,1]), where $f \colon \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 1.

(b) f([-1,2]), where $f \colon \mathbb{R} \to \mathbb{R}$, f(x) = |x| - 1.

- **2.** For each of the following functions, find $f([0,3]), f^{-1}([0,3])$.
 - (a) $f_1: \mathbb{R} \to \mathbb{R}, f_1(x) = x^3 + 1.$

 - (b) $f_2: \mathbb{R} \to \mathbb{R}, f_2(x) = x^2 2x.$ (c) $f_3: \mathbb{R}_+ \to \mathbb{R}_+, f_3(x) = \sqrt{x}$ (here $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \ge 0\}$).
- **3.** For two sets A, B, define their difference A B by $A B = \{x \mid x \in A, x \notin B\} = A \cap \overline{B}$ (some books also use notation $A \setminus B$ instead of A - B).
 - (a) Prove that $A (B \cup C) = (A B) C$, but that in general, $A (B C) \neq (A \cup C) B$ (draw Venn diagrams to help you).
 - (b) Define symmetric difference $A \triangle B = (A B) \cup (B A)$. Prove that this operation is commutative and associative: $A \triangle B = B \triangle A$, $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.
- 4. Let $f: A \to B$. Prove that for any two subsets $Y_1, Y_2 \subset B$, we have $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$. [Hint: $x \in f^{-1}(Y_1 \cap Y_2) \iff f(x) \in Y_1 \cap Y_2$. Now, we need to show that this condition is equivalent to $x \in f^{-1}(Y_1) \cap f^{-1}(Y_2)$]
- **5.** Let $f: A \to B$, and X_1, X_2 are subsets in A.
 - (a) Prove that $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$.
 - (b) Show that it could happen that $f(X_1 \cap X_2) \neq f(X_1) \cap f(X_2)$ (hint: take X_i so that they do not intersect).
- 6. (a) Find all (complex) roots of polynomial $x^4 + 1$.
 - (b) Find all real values of p and q for which the polynomial $x^4 + 1$ is divisible by $x^2 + px + q$.