MATH 9

ASSIGNMENT 17: ONTO AND ONE-TO-ONE FUNCTIONS. BIJECTIONS
 FEBRUARY 13, 2022

Let $f: A \rightarrow B$ be a function.
Let $y \in B$ and consider the equation

$$
f(x)=y
$$

If such an equation always (i.e., for any $y \in B$) has at least one solution, we say that function f is onto, or surjective.

If such an equation always (i.e., for any $y \in B$) has at most one solution, we say that function f is one-to-one, or injective.

If such an equation always (i.e., for any $y \in B$) has a exactly one solution, we say that function f is bijective. Sometimes such functions are also referred to as or one-to-one correspondences.

If f is bijective, then it can be inverted: there is a function $g: B \rightarrow A$ such that $g(f(x))=x, f(g(y))=y$, namely,

$$
g(y)=\text { solution of equation } f(x)=y
$$

Such a function is called inverse of f and denoted $g=f^{-1}$. For example, if $f(x)=2 x+1$, then to find $f^{-1}(y)$, we need to solve $2 x+1=y$, which gives $x=\frac{y-1}{2}$, so $f^{-1}(y)=\frac{y-1}{2}$. [In fact, it can be shown that conversely, if f has an inverse, then f must be a bijection.]

Bijections can be thought of as ways of identifying two different sets. In particular, if there exists a bijection f between two finite sets A, B, then they have the same number of elements: $|A|=|B|$.

1. Show that $f: A \rightarrow B$ is not injective if and only if there exist $x_{1}, x_{2} \in A$ such that $x_{1} \neq x_{2}$, but $f\left(x_{1}\right)=f\left(x_{2}\right)$.
2. For each of the following functions, determine whether it is injective? surjective? bijective?
(a) $f_{1}: \mathbb{R} \rightarrow \mathbb{R}, f_{1}(x)=x^{3}+1$.
(b) $f_{2}: \mathbb{R} \rightarrow \mathbb{R}, f_{2}(x)=x^{2}-2 x$.
(c) $f_{3}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, f_{3}(x)=\sqrt{x}$ (here $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}$).
3. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be given by $f(n)=2 n$. Is this function injective? surjective?
*4. Let $f: A \rightarrow B, g: B \rightarrow C$ be bijections. Prove that the composition $g \circ f: A \rightarrow C$, defined by $g \circ f(x)=g(f(x))$, is also a bijection, and that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
4. Construct bijections between the following sets:
(a) (subsets of the set $\{1, \ldots, n\}) \leftrightarrow$ (sequences of zeros and ones of length n)
(b) (5-element subsets of $\{1, \ldots, 15\}) \leftrightarrow(10$-element subsets of $\{1, \ldots, 15\})$
(c) (set of all ways to put 10 books on two shelves (order on each shelf matters)) \leftrightarrow (set of all ways of writing numbers $1,2, \ldots, 11$ in some order)
[Hint: use numbers $1 \ldots 10$ for books and 11 to indicate where one shelf ends and the other begins.]
(d) (all integer numbers) \leftrightarrow (all even integer numbers)
(e) (all positive integer numbers) \leftrightarrow (all integer numbers)
(f) (interval $(0,1)) \leftrightarrow($ interval $(0,5))$
(g) (interval $(0,1)) \leftrightarrow($ halfline $(1, \infty))$ [Hint: try $1 / x$.]
(h) (interval $(0,1)) \leftrightarrow($ halfline $(0, \infty))$
(i) (all positive integer numbers) \leftrightarrow (all integer numbers)
5. Let A be a finite set, with 10 elements. How many bijections $f: A \rightarrow A$ are there? What if A has n elements?
