MATH 9

ASSIGNMENT 17: ONTO AND ONE-TO-ONE FUNCTIONS. BIJECTIONS

FEBRUARY 13, 2022

Let $f: A \to B$ be a function. Let $y \in B$ and consider the equation

f(x) = y

If such an equation always (i.e., for any $y \in B$) has at least one solution, we say that function f is onto, or surjective.

If such an equation always (i.e., for any $y \in B$) has at most one solution, we say that function f is one-to-one, or injective.

If such an equation always (i.e., for any $y \in B$) has a **exactly** one solution, we say that function f is **bijective**. Sometimes such functions are also referred to as or **one-to-one correspondences**.

If f is bijective, then it can be inverted: there is a function $g: B \to A$ such that g(f(x)) = x, f(g(y)) = y, namely,

q(y) = solution of equation f(x) = y

Such a function is called **inverse of** f and denoted $g = f^{-1}$. For example, if f(x) = 2x + 1, then to find $f^{-1}(y)$, we need to solve 2x + 1 = y, which gives $x = \frac{y-1}{2}$, so $f^{-1}(y) = \frac{y-1}{2}$. [In fact, it can be shown that conversely, if f has an inverse, then f must be a bijection.]

Bijections can be thought of as ways of identifying two different sets. In particular, if there exists a bijection f between two finite sets A, B, then they have the same number of elements: |A| = |B|.

- **1.** Show that $f: A \to B$ is **not** injective if and only if there exist $x_1, x_2 \in A$ such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.
- **2.** For each of the following functions, determine whether it is injective? surjective? bijective?
 - (a) $f_1: \mathbb{R} \to \mathbb{R}, f_1(x) = x^3 + 1.$
 - (b) $f_2 \colon \mathbb{R} \to \mathbb{R}, \ f_2(x) = x^2 2x.$
 - (c) $f_3 \colon \mathbb{R}_+ \to \mathbb{R}_+, f_3(x) = \sqrt{x}$ (here $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \ge 0\}$).
- **3.** Let $f: \mathbb{Z} \to \mathbb{Z}$ be given by f(n) = 2n. Is this function injective? surjective?
- *4. Let $f: A \to B$, $g: B \to C$ be bijections. Prove that the composition $g \circ f: A \to C$, defined by $g \circ f(x) = g(f(x))$, is also a bijection, and that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 5. Construct bijections between the following sets:
 - (a) (subsets of the set $\{1, \ldots, n\}$) \leftrightarrow (sequences of zeros and ones of length n)
 - (b) (5-element subsets of $\{1, \ldots, 15\}$) \leftrightarrow (10-element subsets of $\{1, \ldots, 15\}$)
 - (c) (set of all ways to put 10 books on two shelves (order on each shelf matters))↔ (set of all ways of writing numbers 1, 2, ..., 11 in some order)
 [Hint: use numbers 1...10 for books and 11 to indicate where one shelf ends and the other begins.]
 - (d) (all integer numbers) \leftrightarrow (all even integer numbers)
 - (e) (all positive integer numbers) \leftrightarrow (all integer numbers)
 - (f) (interval (0,1)) \leftrightarrow (interval (0,5))
 - (g) (interval (0,1)) \leftrightarrow (halfline (1, ∞)) [Hint: try 1/x.]
 - (h) (interval (0,1)) \leftrightarrow (halfline $(0,\infty)$)
 - (i) (all positive integer numbers) \leftrightarrow (all integer numbers)
- **6.** Let A be a finite set, with 10 elements. How many bijections $f: A \to A$ are there? What if A has n elements?