MATH 9
 ASSIGNMENT 18: COMPARING INFINITE SETS

FEB 27, 2022

Topics Discussed today

Today we discussed how one compares infinite sets. Namely, we adopted the following definition:two (infinite) sets A, B have the same cardinality if there exists a bijection $f: A \rightarrow B$. In this case, we also write $|A|=|B|$ (note that both $|A|,|B|$ are not numbers but "infinities").

In particular, the smallest infinite set is \mathbb{N}, the set of all positive integer numbers: $\mathbb{N}=\{1,2, \ldots\}$. We say that an infinite set A is countable if there is a bijection between A and \mathbb{N}.

We have proved in class that any subset of \mathbb{N} is either finite or countable; we also proved that \mathbb{Z}, and the set of pairs of positive integers $\mathbb{N} \times \mathbb{N}=\{(a, b) \mid A \in \mathbb{N}, b \in \mathbb{N}\}$ are countable.

Homework

Problems 1-4 are about Hotel Infinity, a (fictional) hotel with infinitely many rooms, numbered 1, 2, $3, \ldots$. In these questions, we assume that each hotel room is single occupancy: only one guest can stay there at any time.

Each of these problems is also reformulated as a question about sets.

1. (a) At some moment, Hotel Infinity is full: all rooms are occupied. Yet, when 2 more guests arrive, the hotel manager says he can give rooms to them, by moving some of the current guests around. Can you show how?
(b) Construct a bijection between sets $\{-1,0,1,2, \ldots\}$ and \mathbb{N}.
2. (a) At some moment, Hotel Infinity is full: all rooms are occupied. Still, the management decides to close half of the rooms - all rooms with odd numbers - for renovation. They claim they can house all their guests in the remaining rooms. Can you show how?
(b) Construct a bijection between the set of all even positive integers $\{2,4,6, \ldots\}$ and \mathbb{N}.
3. (a) Next to Hotel infinity, a competitor has built Hotel Infinity 2, with infinitely many rooms numbered by all integers: $\ldots,-2,-1,0,1,2, \ldots$ Yet, the management of original Hotel Infinity claims that their hotel is no smaller than the competition: they could house all the guests of Hotel Infinity 2 in Hotel Infinity. Could you show how?
(b) Construct a bijection between the set of all integer numbers $\{\ldots,-2,-1,0,1,2, \ldots\}$ and \mathbb{N}.
*4. (a) Next to Hotel infinity, a new competitor has built Hotel Infinity 3, with infinitely many rooms numbered by all positive rational numbers: there are rooms with numbers $1,2,2 / 5,1 / 3$, $1137 / 295, \ldots$ Yet, the management of original Hotel Infinity claims that their hotel is no smaller than the competition: they could house all the guests of Hotel Infinity 3 in Hotel Infinity. Could you show how?
(b) Construct a bijection between the set of all positive rational numbers and \mathbb{N}.
4. Prove that if A is finite and B countable, then $A \cup B$ is also countable. [Hint: look at problem 1.]
*6. Let W be the set of all "words" that can be written using the alphabet consisitng of 26 lowercase English letters; by a "word", we mean any (finite) sequence of letters, even if it makes no sense - for example, abababaaaaa. Prove that W is countable. [Hint: for any n, there are only finitely many words of length n.]
