MATH 9
 ASSIGNMENT 21: PARTITIONS, EQUIVALENCE CLASSES AND MODULAR ARITHMETIC
 MARCH 27, 2022

Partitions

A partition of a set A is decomposition of it into non-intersecting subsets:

$$
A=A_{1} \cup \ldots A_{n} \ldots
$$

with $A_{i} \cap A_{j}=\varnothing$. It is allowed to have infinitely many subsets A_{i}.
Now, let \sim be an equivalence relation on a set A. Recall that we have defined, for an element $a \in A$, its equivalence class by

$$
[a]=\{x \in A \mid x \sim a\}
$$

Theorem. If \sim is an equivalence relation on a set A, then it defines a partition of A into equivalence classes.
Example: if $A=\mathbb{Z}$ and the equivalence relation is defined by congruence $\bmod 3$:

$$
a \equiv b \quad \bmod n \text { if } a-b \text { is a multiple of } 3
$$

then

$$
\begin{aligned}
{[0] } & =\{\ldots,-6,-3,0,3,6, \ldots\} \\
{[1] } & =\{\ldots,-2,1,4,7, \ldots\} \\
{[2] } & =\{\ldots,-1,2,5,8, \ldots\} \\
{[3] } & =\{\ldots,-6,-3,0,3,6, \ldots\}=[0]
\end{aligned}
$$

and thus we have a partition of \mathbb{Z} :

$$
\mathbb{Z}=[0] \cup[1] \cup[2]
$$

Define

$$
A / \sim=\text { set of equivalence classes for } \sim
$$

so elements of A / \sim are equivalence classes. Informally, A / \sim is the set obtained from A by identifying all equivalent elements from A with each other.

Examples:

- Vectors: the set of vectors is defined as the set of equivalence classes

$$
\{\text { directed segments in the plane\}/ } \sim
$$

where the equivalence relation is given by $\overrightarrow{A B} \sim \overrightarrow{A^{\prime} B^{\prime}}$ if $A B B^{\prime} A^{\prime}$ is a parallelogram.

- rational numbers: $\mathbb{Q}=\{(a, b) \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0\} / \sim$, where \sim is given by

$$
(a, b) \sim(c, d) \text { if } a d=b c
$$

(this is obtained from $a / b=c / d$ by cross-multiplying).

- Remainders, or residues, modulo m (here $m>1$):

$$
\mathbb{Z}_{m}=\mathbb{Z} /(\equiv \bmod m)
$$

where $\equiv \bmod m$ was defined by $a \equiv b \bmod m$ if $a-b$ is a multiple of m (or, equivalently, if a, b give the same remainder upon division by m). In this case, there are exactly m equivalence classes: $[0],[1], \ldots,[m-1]$ (because $[m]=[0]$); thus, \mathbb{Z}_{m} is a finite set with m elements.

Moreover, \mathbb{Z}_{m} is more than a set: one can define addition and multiplication in it in the usual way:

$$
\begin{aligned}
{[a]+[b] } & =[a+b] \\
{[a] \cdot[b] } & =[a b]
\end{aligned}
$$

(note that one needs to check that this definition does not depend on the choice of representatives a, b in each equivalence class - we discussed this.) So defined addition and multiplication satisfy all the
usual rules: associativity, commutativity, distributivity (we skip discussion of this). Note, however, that in general it is impossible to divide: for example, $[2][3]=[0]$ in \mathbb{Z}_{6}, but one can not divide both sides by $[3]$ to get $[2]=[0]$.
When doing the homework, the following result (which we had discussed last year) will be helpful:
Theorem. An congruence class $[a]$ modulo m is invertible (i.e., there exists some $[b]$ such that $[a][b]=[1]$) if and only if $\operatorname{gcd}(a, n)=1$. In particular, if n is prime, then any non-zero congruence class is invertible.

To construct the inverse of $[a] \bmod n$, one uses Euclid's algorithm which allows us to find integer x, y such that

$$
a x+n y=1
$$

Thus, $a x \equiv 1 \bmod n$, so $[a]^{-1}=[x]$.

Homework

1. Let relation \sim on the set \mathbb{R}^{2} be defined by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if $x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}$. Describe equivalence classes and show that \mathbb{R}^{2} / \sim can be identified with $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}$.
2. Let \sim be the relation on the set of all directed segments in the plane defined by

$$
\overrightarrow{A B} \sim \overrightarrow{A^{\prime} B^{\prime}} \quad \text { if } A B B^{\prime} A^{\prime} \text { is a parallelogram }
$$

Prove that it is an equivalence relation.
3. Consider the equivalence relation on \mathbb{R} given by

$$
x \sim y \text { if } x-y=n \cdot 360 \text { for some } n \in \mathbb{Z}
$$

Show that this is an equivalence relation, and construct a bijection between the set of equivalence classes and the unit circle.
4. Recall the equivalence relation from last homework: consider the set $A=\mathbb{R}^{2}-\{(0,0)\}$ (coordinate plane with the origin removed). Define a relation \sim on A by

$$
\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right) \text { if there exists } t>0 \text { such that } x_{1}=t y_{1}, x_{2}=t y_{2}
$$

Can you describe all equivalence classes for this relation? can you describe the set A / \sim of equivalence classes?
5. Compute the following inverses:

- inverse of [2] mod 5
- inverse of [5] mod 7
- inverse of [7] mod 11

6. Let $n>1$ and let a be an integer such that $\operatorname{gcd}(a, n)=1$. Recall that in this case, $[a]$ has an inverse in \mathbb{Z}_{n} : there exists b such that $[a][b]=[1]$.
(a) Show that one can divide both sides of equality in \mathbb{Z}_{n} by $[a]$: if $[a x]=[a y]$, then $[x]=[y]$. [Hint: $[a x]=[a y]$ means that $a(x-y) \equiv 0 \bmod n$.] Note that it fails without the assumption $\operatorname{gcd}(a, n)=1$.
(b) Prove that the function $\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}:[x] \mapsto[a x]$ is injective. (Recall that a function $f: A \rightarrow B$ is injective if for every $y \in B$, the equation $f(x)=y$ has at most one solution.)
(c) Prove that this function is bijective. Can you describe the inverse function?
(d) Deduce that for any $y \in \mathbb{Z}$, equation $a x \equiv y \bmod n$ has an integer solution, and any two solutions differ by a multiple of n.
