MATH 9 ASSIGNMENT 22: MODULAR ARITHMETIC AND CHINESE REMAINDER THEOREM

APRIL 2, 2022

Congruence classes and modular arithmetic

Recall that congruence mod n relation

 $a \equiv b \mod n$ if $a - b$ is a multiple of n

Equivalence classes for this relation are called congruence classes. For example, for $n = 3$ we have

$$
[0] = \{ \dots, -6, -3, 0, 3, 6, \dots \}
$$

$$
[1] = \{ \dots, -2, 1, 4, 7, \dots \}
$$

$$
[2] = \{ \dots, -1, 2, 5, 8, \dots \}
$$

$$
[3] = \{ \dots, -6, -3, 0, 3, 6, \dots \} = [0]
$$

Set of all equivalence classes mod n is denoted $\mathbb{Z}_n = \mathbb{Z}/(\equiv \mod m)$. There are exactly n congruence classes: [0], [1], ..., $[n-1]$ (because $[n] = [0]$); thus, \mathbb{Z}_n is a finite set with n elements. For example, for $n=3$, we have

$$
\mathbb{Z}_3 = \{ [0], [1], [2] \}
$$

One can define addition and multiplication in \mathbb{Z}_n in the usual way:

$$
[a] + [b] = [a + b]
$$

$$
[a] \cdot [b] = [ab]
$$

(note that one needs to check that this definition does not depend on the choice of representatives a, b in each equivalence class – we discussed this.) So defined addition and multiplication satisfy all the usual rules: associativity, commutativity, distributivity (we skip discussion of this). Note, however, that in general it is impossible to divide: for example, $[2][3] = [0]$ in \mathbb{Z}_6 , but one can not divide both sides by [3] to get $[2] = [0]$.

INVERSES

We say that a congruence class $[a] \in \mathbb{Z}_n$ is invertible if there exists a congruence class $[b] \in \mathbb{Z}_n$ such that $[a][b] = 1.$ For example, [3] is invertible mod 10 because $[3][7] = [3 \cdot 7] = [21] = [1].$

We had the following theorem:

Theorem. A congruence class $[a] \in \mathbb{Z}_n$ is invertible if and only if $gcd(a, n) = 1$

For example, [7] is invertible in \mathbb{Z}_{15} (namely, [7] \cdot [13] = [91] = [1]), but [6] is not invertible.

To find inverse of $[a] \in \mathbb{Z}_n$, we need to solve equation $ax + ny = 1$ (which can be done using Euclid's algorithm); then $ax \equiv 1 \mod n$, so $[a]^{-1} = [x]$.

Chinese Remainder Theorem

Theorem. Let m, n be relatively prime. Then for any k, l , the system of congruences

$$
x \equiv k \mod m
$$

$$
x \equiv l \mod n
$$

has a solution, and any two solutions differ by a multiple of mn.

Proof of this theorem was discussed in class.

A reformulation of this theorem is as follows. Consider the cartesian product $\mathbb{Z}_m \times \mathbb{Z}_n$. This also has addition and multiplication: $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$, and similarly for multiplication.

Theorem. Let m, n be relatively prime. Then one has a bijection $f: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ so that addition, multiplication match.

For example, we have a bijection $\mathbb{Z}_6 \simeq \mathbb{Z}_2 \times \mathbb{Z}_3$. In other words: if we know the remainder of a number number mod 6, we can compute this number mod 2 and mod 3. Conversely, if we know remainders upon division of a number by 2 and by 3, we can uniquely recover the remainder upon division of this number by 6.

Here is an example showing how one can solve such a system explicitly. Consider the system

 $x \equiv 2 \mod 7$ $x \equiv 4 \mod 11$

From the first equation, we get $x = 7t + 2$. Substituting it in the second equation, we get

 $7t + 2 \equiv 4 \mod 11$ $7t \equiv 2 \mod 11$

To solve this, let us multiply both sides by inverse of [7] mod 11. Using Euclids's algorithm (or guess and check), we find $2 \cdot 11 - 3 \cdot 7 = 1$, so

$$
-3 \cdot 7 \equiv 1 \mod 11
$$

 $[7]^{-1} = [-3] = [8]$

Thus, to solve $7t \equiv 2 \mod 11$, we need to multiply with sides by $[7]^{-1} = [8]$, which gives $t \equiv 2 \cdot 8 \equiv 5$ mod 11. Therefore, original equation has a solution $x = 7 \cdot 5 + 2 = 37$.

HOMEWORK

- 1. Solve the following equations.
	- (a) $5x + 3 \equiv 7 \mod 11$

(b) $4x = 17 \mod 31$

2. Find all solutions of the system

$$
x \equiv 5 \mod 13
$$

$$
x \equiv 9 \mod 12
$$

- 3. (a) Write all invertible elements of \mathbb{Z}_7 . How many of them are there? For each of them, find the inverse.
	- (b) An order of an $[a] \in \mathbb{Z}_n$ is the smallest power k such that $[a]^k = [1]$. For example, order of $[3] \in \mathbb{Z}_{10}$ is 4, because

$$
[3]^2 = [9],
$$
 $[3]^3 = [7],$ $[3]^4 = [7] \cdot [3] = [21] = [1]$

For each invertible element of \mathbb{Z}_7 , find its order.

- (c) Is there an invertible element [a] in \mathbb{Z}_7 such that all other elements are powers of [a]?
- 4. Answer the questions of the previous problem, replacing \mathbb{Z}_7 by \mathbb{Z}_{11} .
- 5. (a) Compute the remainder upon division of 4^{2003} by 7.
	- (b) Compute the remainder upon division of 4^{2003} by 11.
	- (c) Use Chinese Remainder theorem to compute the remainder upon division of 4^{2003} by 77.
- **6.** Find the remainder upon division of 19^{14} by 70.
- 7. Find the smallest positive integer number such that when divided by 2, 3, 5 it gives remainders 1, 2, 4 respectively, and in addition, it is divisible by 7. [hint: what can you say about number $n + 1$?]
- 8. Consider the sequence defined by the formulas

$$
a_1 = a_2 = a_3 = 1,
$$

\n $a_k = a_{k-1} + a_{k-2} + a_{k-3}$ for $k \ge 4$

Find $a_{2015} \mod 3$; $a_{2015} \mod 12$.