Scientific Notation

Provides a compact way of expressing very large and very small numbers

Large numbers

$$2.0 \times 10^{6} = 2,000,000$$

Move the decimal point 6 places to the right

$$2.0 \times 10^{6} = 2000000$$

Small numbers

$$7.0 \times 10^{-5} = 0.00007$$

Move the decimal point 5 places to the left

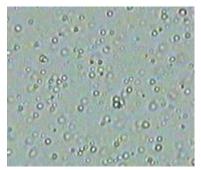
$$7.0 \times 10^{-5} = 0.00007$$

Length scales in Nature

1 mm

Grain of sugar, small insects, etc

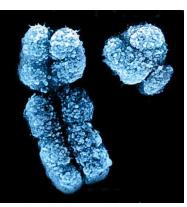
1 km


Brooklyn bridge

10⁻³ m 1 m 10³ m


1 micron (1μm)

Particles in smoke, milk, etc


 $(1-20 \mu m)$

Bacteria (1-10 μm)

Human Chromosome (2 -10 μm)

1000 km

10⁻⁶ 10⁻³ 1 m 10³ 10⁶

Homework 1

Problem 0.

Watch the documentary called "Cosmic Voyage" at https://www.youtube.com/watch?v=GTiDfxATYa4
paying particular attention to the length scales displayed.
Now, it is time for you to explore the different scales of the universe by going to http://htwins.net/scale2/

Problem 1. Write the following quantities using scientific notation:

$$540,000,000 \frac{m}{s} =$$

$$0.000,000,000,000,0015 \text{ in} =$$

$$0.000,000,025 s =$$

Homework 1

Problem 2. Express the following quantities in decimal notation:

$$1.87 \times 10^7 \text{lb} =$$

$$7.681 \times 10^6 \text{Å} =$$

$$6.8 \times 10^{-4} \, \mathrm{g} =$$

$$6.8 \times 10^{-4} \,\mathrm{g} =$$
 $9.979 \times 10^{-2} \,\mathrm{N} =$

Problem 3. Carry out the following operations and express the result in scientific notation:

$$(2.1 \times 10^4) \times (5.6 \times 10^2) =$$

$$(7 \times 10^5) \times (2 \times 10^{-4}) =$$

$$\frac{4.4 \times 10^4}{2 \times 10^4} =$$

$$\frac{5 \times 10^5}{5 \times 10^{-5}} =$$