Scientific Notation

Provides a compact way of expressing very large and very small numbers

Large numbers

$2.0 \times 10^{\circledR}=2,000,000$

Move the decimal point 6 places to the right

$2.0 \times 10^{6}=2000000$

Small numbers

$7.0 \times 10^{-5}=0.00007$

Move the decimal point 5 places to the left

$$
7.0 \times 10^{-5}=0.00007
$$

Length scales in Nature

1 mm

Grain of sugar, small insects, etc

1 km

Brooklyn bridge

1 micron ($1 \mu \mathrm{~m}$)

Particles in smoke, milk, etc (1-20 $\mu \mathrm{m}$)

Homework 1

Problem 0.

Watch the documentary called "Cosmic Voyage" at https://www.youtube.com/watch?v=GTiDfxATYa4
paying particular attention to the length scales displayed.
Now, it is time for you to explore the different scales of the universe by going to http://htwins.net/scale2/

Problem 1. Write the following quantities using scientific notation:
$1,340,000,000 \mathrm{~kg}=$ \qquad
$540,000,000 \frac{\mathrm{~m}}{\mathrm{~s}}=$ \qquad
$0.000,000,000,000,0015$ in $=$ \qquad
0.000,000,025 s = \qquad

Homework 1

Problem 2. Express the following quantities in decimal notation:
$1.87 \times 10^{7} \mathrm{lb}=$ \qquad
$6.8 \times 10^{-4} \mathrm{~g}=$ \qquad

$$
\begin{aligned}
& 7.681 \times 10^{6} \AA= \\
& 9.979 \times 10^{-2} \mathrm{~N}=
\end{aligned}
$$

Problem 3. Carry out the following operations and express the result in scientific notation:
$\left(2.1 \times 10^{4}\right) \times\left(5.6 \times 10^{2}\right)=$
$\left(7 \times 10^{5}\right) \times\left(2 \times 10^{-4}\right)=$
$\frac{4.4 \times 10^{4}}{2 \times 10^{4}}=$
$\frac{5 \times 10^{5}}{5 \times 10^{-5}}=$

