Ohm's Law

$V=I \cdot R$

- V is Voltage Drop, the Potential Difference between two ends of a wire (or resistor, light bulb etc). Measured in Volts [V]
- I is Electric Current, the total charge flowing through the wire in 1 sec . Measured in Amperes [A] (Coulomb per second) : 1A=1C/s
- R is Resistance of the wire. Measured in Ohms [Ω]. $1 \Omega=1 \mathrm{~V} / \mathrm{A}$

Serial and Parallel Circuits

Serial connection:

- Currents are the same: $\boldsymbol{I}_{1}=I_{2}$
- Voltage is added: $\boldsymbol{V}=\boldsymbol{V}_{\mathbf{1}}+\boldsymbol{V}_{\mathbf{2}}$

Homework

Problem 1

An electric heater is made out of a piece of wire with resistance $R=10 \Omega$, plugged into a standard 110V outlet. Find the current through this wire.

Problem 2

Two resistors, 10Ω and 20Ω are connected to a 1.5 V battery in series. Sketch the circuit and find the total current flowing via the battery. You want to replace these two resistors with a single one, so that the current through the battery stays the same. How large should be its resistance?

