Acceleration

- Acceleration:

$$
a=\frac{\text { change in velocit } \mathrm{y}}{\text { change in time }}=\frac{\Delta v}{\Delta t}
$$

Standard units of acceleration : $\mathrm{m} / \mathrm{s}^{2}$

- If there were no air resistance, all objects in Earth gravity would fall with the same acceleration,

$$
g=9.81 \mathrm{~m} / \mathrm{s}^{2} \text { (directed downward) }
$$

Galileo Galilei's experiment in Pisa (possibly, a legend)

- For motion at constant acceleration a, with no initial speed, the displacement after time t is:

$$
x=v_{\text {average }} t=\left(\frac{0+a t}{2}\right) \times t=\frac{a t^{2}}{2}
$$

Review of Kinematics

Velocity

$$
v=\frac{\text { change in position }}{\text { change in time }}=\frac{d x}{d t}
$$

$$
\Delta x=v \Delta t
$$

Equation of Uniform Motion:

$$
x(t)=x_{0}+v_{0} t
$$

Acceleration

* Here x_{0} and v_{0} are position and velocity at $\mathrm{t}=0$.

Equations of " $a=$ const" Motion :

$$
\begin{gathered}
v(t)=v_{0}+a t \\
x(t)=x_{0}+v_{0} t+\frac{a t^{2}}{2}
\end{gathered}
$$

HOMEWORK

Problem 1.

According to a legend, Galileo Galilei was experimenting by dropping different objects from the top of the Leaning tower of Pisa (height is $\mathrm{h}=56 \mathrm{~m}$). Neglecting air resistance, find how much time it took for those objects to fall, and what was their speed when they hit the ground. Assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Problem 2.

Imagine that Mr. Gallileo (from Problem 1) throws a rock from the top of the Tower of Pisa, with an initial velocity $\mathrm{v}=6 \mathrm{~m} / \mathrm{s}$ directed upward .
a) Write equations of motion for this rock. To do this, first pick up your coordinate ' x ': decide, where is 0 , which way is positive. Then, determine initial position and velocity, as well as acceleration (pay attention to signs). Now you can write equations of motion in the form $x(t)=\ldots$, and $v(t)=\ldots$.
b) From your equations, find the time ' t ' at which the rock will pass Galileo on the way down. How big is its speed at that time?

